Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Carregar o modelo e tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
# Fun莽茫o para gerar resposta | |
def generate_response(user_input, chat_history=None): | |
if chat_history is None: | |
chat_history = [] | |
# Codificar a entrada do usu谩rio | |
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') | |
# Concatenar a entrada do usu谩rio com o hist贸rico da conversa | |
if chat_history: | |
bot_input_ids = torch.cat([chat_history, new_user_input_ids], dim=-1) | |
else: | |
bot_input_ids = new_user_input_ids | |
# Gerar resposta | |
response_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
# Decodificar a resposta | |
response = tokenizer.decode(response_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
# Atualizar o hist贸rico da conversa | |
chat_history = response_ids | |
return response, chat_history | |
# Interface Gradio | |
demo = gr.Interface( | |
fn=generate_response, | |
inputs=["text"], | |
outputs=["text"], | |
title="DialoGPT Conversa", | |
description="Converse com o modelo DialoGPT", | |
allow_flagging="never" | |
) | |
# Inicializar o hist贸rico da conversa | |
chat_history = None | |
# Lan莽ar a interface | |
demo.launch() | |