Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# import pandas as pd | |
# import numpy as np | |
# import pickle | |
# import sklearn | |
# from datasets import load_dataset | |
# import joblib | |
# import requests | |
# # Read the data | |
# data = pd.read_csv("mldata.csv") | |
# # Function to load model based on selection | |
# def load_model(model_choice): | |
# if model_choice == "Random Forest": | |
# with open('rfweights (1).pkl', 'rb') as pickleFile: | |
# return pickle.load(pickleFile) | |
# elif model_choice == "Decision Tree": | |
# with open('dtreeweights.pkl', 'rb') as pickleFile: | |
# return pickle.load(pickleFile) | |
# else: | |
# raise ValueError("Invalid model selection") | |
# # Prepare categorical data (same as original code) | |
# categorical_cols = data[[ | |
# 'certifications', | |
# 'workshops', | |
# 'Interested subjects', | |
# 'interested career area ', | |
# 'Type of company want to settle in?', | |
# 'Interested Type of Books' | |
# ]] | |
# # Assign category codes | |
# for i in categorical_cols: | |
# data[i] = data[i].astype('category') | |
# data[i] = data[i].cat.codes | |
# # Create reference dictionaries for embeddings (same as original code) | |
# def create_embedding_dict(column): | |
# unique_names = list(categorical_cols[column].unique()) | |
# unique_codes = list(data[column].unique()) | |
# return dict(zip(unique_names, unique_codes)) | |
# certificates_references = create_embedding_dict('certifications') | |
# workshop_references = create_embedding_dict('workshops') | |
# subjects_interest_references = create_embedding_dict('Interested subjects') | |
# career_interest_references = create_embedding_dict('interested career area ') | |
# company_intends_references = create_embedding_dict('Type of company want to settle in?') | |
# book_interest_references = create_embedding_dict('Interested Type of Books') | |
# # Prediction function (modified to accept model choice) | |
# def rfprediction(model_choice, name, logical_thinking, hackathon_attend, coding_skills, public_speaking_skills, | |
# self_learning, extra_course, certificate_code, worskhop_code, read_writing_skill, memory_capability, | |
# subject_interest, career_interest, company_intend, senior_elder_advise, book_interest, introvert_extro, | |
# team_player, management_technical, smart_hardworker): | |
# # Load the selected model | |
# rfmodel = load_model(model_choice) | |
# # Create DataFrame (same as original code) | |
# df = pd.DataFrame.from_dict( | |
# { | |
# "logical_thinking": [logical_thinking], | |
# "hackathon_attend": [hackathon_attend], | |
# "coding_skills": [coding_skills], | |
# "public_speaking_skills": [public_speaking_skills], | |
# "self_learning": [self_learning], | |
# "extra_course": [extra_course], | |
# "certificate": [certificate_code], | |
# "workshop": [worskhop_code], | |
# "read_writing_skills": [ | |
# (0 if "poor" in read_writing_skill else 1 if "medium" in read_writing_skill else 2) | |
# ], | |
# "memory_capability": [ | |
# (0 if "poor" in memory_capability else 1 if "medium" in memory_capability else 2) | |
# ], | |
# "subject_interest": [subject_interest], | |
# "career_interest": [career_interest], | |
# "company_intend": [company_intend], | |
# "senior_elder_advise": [senior_elder_advise], | |
# "book_interest": [book_interest], | |
# "introvert_extro": [introvert_extro], | |
# "team_player": [team_player], | |
# "management_technical":[management_technical], | |
# "smart_hardworker": [smart_hardworker] | |
# } | |
# ) | |
# # Replace string values with numeric representations | |
# df = df.replace({ | |
# "certificate": certificates_references, | |
# "workshop": workshop_references, | |
# "subject_interest": subjects_interest_references, | |
# "career_interest": career_interest_references, | |
# "company_intend": company_intends_references, | |
# "book_interest": book_interest_references | |
# }) | |
# # Dummy encoding (same as original code) | |
# userdata_list = df.values.tolist() | |
# # Management-Technical dummy encoding | |
# if(df["management_technical"].values == "Management"): | |
# userdata_list[0].extend([1]) | |
# userdata_list[0].extend([0]) | |
# userdata_list[0].remove('Management') | |
# elif(df["management_technical"].values == "Technical"): | |
# userdata_list[0].extend([0]) | |
# userdata_list[0].extend([1]) | |
# userdata_list[0].remove('Technical') | |
# else: | |
# return "Error in Management-Technical encoding" | |
# # Smart-Hard worker dummy encoding | |
# if(df["smart_hardworker"].values == "smart worker"): | |
# userdata_list[0].extend([1]) | |
# userdata_list[0].extend([0]) | |
# userdata_list[0].remove('smart worker') | |
# elif(df["smart_hardworker"].values == "hard worker"): | |
# userdata_list[0].extend([0]) | |
# userdata_list[0].extend([1]) | |
# userdata_list[0].remove('hard worker') | |
# else: | |
# return "Error in Smart-Hard worker encoding" | |
# # Prediction | |
# prediction_result_all = rfmodel.predict_proba(userdata_list) | |
# # Create result dictionary | |
# result_list = { | |
# "Applications Developer": float(prediction_result_all[0][0]), | |
# "CRM Technical Developer": float(prediction_result_all[0][1]), | |
# "Database Developer": float(prediction_result_all[0][2]), | |
# "Mobile Applications Developer": float(prediction_result_all[0][3]), | |
# "Network Security Engineer": float(prediction_result_all[0][4]), | |
# "Software Developer": float(prediction_result_all[0][5]), | |
# "Software Engineer": float(prediction_result_all[0][6]), | |
# "Software Quality Assurance (QA)/ Testing": float(prediction_result_all[0][7]), | |
# "Systems Security Administrator": float(prediction_result_all[0][8]), | |
# "Technical Support": float(prediction_result_all[0][9]), | |
# "UX Designer": float(prediction_result_all[0][10]), | |
# "Web Developer": float(prediction_result_all[0][11]), | |
# } | |
# return result_list | |
# # Lists for dropdown menus (same as original code) | |
# cert_list = ["app development", "distro making", "full stack", "hadoop", "information security", "machine learning", "python", "r programming", "shell programming"] | |
# workshop_list = ["cloud computing", "data science", "database security", "game development", "hacking", "system designing", "testing", "web technologies"] | |
# skill = ["excellent", "medium", "poor"] | |
# subject_list = ["cloud computing", "Computer Architecture", "data engineering", "hacking", "IOT", "Management", "networks", "parallel computing", "programming", "Software Engineering"] | |
# career_list = ["Business process analyst", "cloud computing", "developer", "security", "system developer", "testing"] | |
# company_list = ["BPA", "Cloud Services", "Finance", "Product based", "product development", "SAaS services", "Sales and Marketing", "Service Based", "Testing and Maintainance Services", "Web Services"] | |
# book_list = ["Action and Adventure", "Anthology", "Art", "Autobiographies", "Biographies", "Childrens", "Comics","Cookbooks","Diaries","Dictionaries","Drama","Encyclopedias","Fantasy","Guide","Health","History","Horror","Journals","Math","Mystery","Poetry","Prayer books","Religion-Spirituality","Romance","Satire","Science","Science fiction","Self help","Series","Travel","Trilogy"] | |
# Choice_list = ["Management", "Technical"] | |
# worker_list = ["hard worker", "smart worker"] | |
# # Create Gradio interface (modified to include model selection) | |
# demo = gr.Interface( | |
# fn=rfprediction, | |
# inputs=[ | |
# gr.Dropdown(["Random Forest", "Decision Tree"], label="Select Machine Learning Model"), | |
# gr.Textbox(placeholder="What is your name?", label="Name"), | |
# gr.Slider(minimum=1, maximum=9, value=3, step=1, label="Are you a logical thinking person?", info="Scale: 1 - 9"), | |
# gr.Slider(minimum=0, maximum=6, value=0, step=1, label="Do you attend any Hackathons?", info="Scale: 0 - 6 | 0 - if not attended any"), | |
# gr.Slider(minimum=1, maximum=9, value=5, step=1, label="How do you rate your coding skills?", info="Scale: 1 - 9"), | |
# gr.Slider(minimum=1, maximum=9, value=3, step=1, label="How do you rate your public speaking skills/confidency?", info="Scale: 1 - 9"), | |
# gr.Radio({"Yes", "No"}, type="index", label="Are you a self-learning person? *"), | |
# gr.Radio({"Yes", "No"}, type="index", label="Do you take extra courses in uni (other than IT)? *"), | |
# gr.Dropdown(cert_list, label="Select a certificate you took!"), | |
# gr.Dropdown(workshop_list, label="Select a workshop you attended!"), | |
# gr.Dropdown(skill, label="Select your read and writing skill"), | |
# gr.Dropdown(skill, label="Is your memory capability good?"), | |
# gr.Dropdown(subject_list, label="What subject you are interested in?"), | |
# gr.Dropdown(career_list, label="Which IT-Career do you have interests in?"), | |
# gr.Dropdown(company_list, label="Do you have any interested company that you intend to settle in?"), | |
# gr.Radio({"Yes", "No"}, type="index", label="Do you ever seek any advices from senior or elders? *"), | |
# gr.Dropdown(book_list, label="Select your interested genre of book!"), | |
# gr.Radio({"Yes", "No"}, type="index", label="Are you an Introvert?| No - extrovert *"), | |
# gr.Radio({"Yes", "No"}, type="index", label="Ever worked in a team? *"), | |
# gr.Dropdown(Choice_list, label="Which area do you prefer: Management or Technical?"), | |
# gr.Dropdown(worker_list, label="Are you a Smart worker or Hard worker?") | |
# ], | |
# outputs=gr.Label(num_top_classes=5), | |
# title="IT-Career Recommendation System: TMI4033 Colletive Intelligence, Group 12", | |
# description="Members: Derrick Lim Kin Yeap 74597, Jason Jong Sheng Tat 75125, Jason Ng Yong Xing 75127, Muhamad Hazrie Bin Suhkery 73555 " | |
# ) | |
# url = "https://jobs-api14.p.rapidapi.com/v2/list" | |
# querystring = { | |
# "query":"Web Developer", | |
# "location":"India", | |
# "autoTranslateLocation":"false", | |
# "remoteOnly":"false", | |
# "employmentTypes":"fulltime;parttime;intern;contractor" | |
# } | |
# headers = { | |
# "x-rapidapi-key": "714f5a2539msh798d996c3243876p19c71ajsnfcd7ce481cb9", | |
# "x-rapidapi-host": "jobs-api14.p.rapidapi.com" | |
# } | |
# # Main execution | |
# if __name__ == "__main__": | |
# # Fetch job listings before launching the app | |
# try: | |
# response = requests.get(url, headers=headers, params=querystring) | |
# job_listings = response.json() | |
# print("Job Listings Retrieved Successfully") | |
# # You could potentially store or process job_listings here | |
# except requests.RequestException as e: | |
# print(f"Error fetching job listings: {e}") | |
# demo.launch(share=True) | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import sklearn | |
from datasets import load_dataset | |
import joblib | |
import requests | |
# Read the data | |
data = pd.read_csv("mldata.csv") | |
# Function to load model based on selection | |
def load_model(model_choice): | |
if model_choice == "Random Forest": | |
with open('rfweights (1).pkl', 'rb') as pickleFile: | |
return pickle.load(pickleFile) | |
elif model_choice == "Decision Tree": | |
with open('dtreeweights.pkl', 'rb') as pickleFile: | |
return pickle.load(pickleFile) | |
else: | |
raise ValueError("Invalid model selection") | |
# Prepare categorical data | |
categorical_cols = data[[ | |
'certifications', | |
'workshops', | |
'Interested subjects', | |
'interested career area ', | |
'Type of company want to settle in?', | |
'Interested Type of Books' | |
]] | |
# Assign category codes | |
for i in categorical_cols: | |
data[i] = data[i].astype('category') | |
data[i] = data[i].cat.codes | |
# Create reference dictionaries for embeddings | |
def create_embedding_dict(column): | |
unique_names = list(categorical_cols[column].unique()) | |
unique_codes = list(data[column].unique()) | |
return dict(zip(unique_names, unique_codes)) | |
certificates_references = create_embedding_dict('certifications') | |
workshop_references = create_embedding_dict('workshops') | |
subjects_interest_references = create_embedding_dict('Interested subjects') | |
career_interest_references = create_embedding_dict('interested career area ') | |
company_intends_references = create_embedding_dict('Type of company want to settle in?') | |
book_interest_references = create_embedding_dict('Interested Type of Books') | |
# Function to fetch job listings | |
def fetch_job_listings(job_title): | |
url = "https://jobs-api14.p.rapidapi.com/v2/list" | |
querystring = { | |
"query": job_title, | |
"location": "India", | |
"autoTranslateLocation": "false", | |
"remoteOnly": "false", | |
"employmentTypes": "fulltime;parttime;intern;contractor" | |
} | |
headers = { | |
"x-rapidapi-key": "714f5a2539msh798d996c3243876p19c71ajsnfcd7ce481cb9", | |
"x-rapidapi-host": "jobs-api14.p.rapidapi.com" | |
} | |
try: | |
response = requests.get(url, headers=headers, params=querystring) | |
job_data = response.json() | |
# Process and format job listings | |
if job_data.get('jobs'): | |
job_listings = [] | |
for job in job_data['jobs'][:5]: # Limit to 5 job listings | |
job_listings.append([ | |
job.get('title', 'N/A'), | |
job.get('company', 'N/A'), | |
job.get('location', 'N/A'), | |
job.get('salary', 'Not specified') | |
]) | |
return job_listings | |
else: | |
return [['No job listings', 'found', 'for this', 'career path']] | |
except requests.RequestException as e: | |
return [['Error', 'fetching', 'job listings', str(e)]] | |
# Prediction function (modified to return job suggestions) | |
def rfprediction(model_choice, name, logical_thinking, hackathon_attend, coding_skills, public_speaking_skills, | |
self_learning, extra_course, certificate_code, worskhop_code, read_writing_skill, memory_capability, | |
subject_interest, career_interest, company_intend, senior_elder_advise, book_interest, introvert_extro, | |
team_player, management_technical, smart_hardworker): | |
# Load the selected model | |
rfmodel = load_model(model_choice) | |
# Create DataFrame | |
df = pd.DataFrame.from_dict( | |
{ | |
"logical_thinking": [logical_thinking], | |
"hackathon_attend": [hackathon_attend], | |
"coding_skills": [coding_skills], | |
"public_speaking_skills": [public_speaking_skills], | |
"self_learning": [self_learning], | |
"extra_course": [extra_course], | |
"certificate": [certificate_code], | |
"workshop": [worskhop_code], | |
"read_writing_skills": [ | |
(0 if "poor" in read_writing_skill else 1 if "medium" in read_writing_skill else 2) | |
], | |
"memory_capability": [ | |
(0 if "poor" in memory_capability else 1 if "medium" in memory_capability else 2) | |
], | |
"subject_interest": [subject_interest], | |
"career_interest": [career_interest], | |
"company_intend": [company_intend], | |
"senior_elder_advise": [senior_elder_advise], | |
"book_interest": [book_interest], | |
"introvert_extro": [introvert_extro], | |
"team_player": [team_player], | |
"management_technical":[management_technical], | |
"smart_hardworker": [smart_hardworker] | |
} | |
) | |
# Replace string values with numeric representations | |
df = df.replace({ | |
"certificate": certificates_references, | |
"workshop": workshop_references, | |
"subject_interest": subjects_interest_references, | |
"career_interest": career_interest_references, | |
"company_intend": company_intends_references, | |
"book_interest": book_interest_references | |
}) | |
# Dummy encoding | |
userdata_list = df.values.tolist() | |
# Management-Technical dummy encoding | |
if(df["management_technical"].values == "Management"): | |
userdata_list[0].extend([1]) | |
userdata_list[0].extend([0]) | |
userdata_list[0].remove('Management') | |
elif(df["management_technical"].values == "Technical"): | |
userdata_list[0].extend([0]) | |
userdata_list[0].extend([1]) | |
userdata_list[0].remove('Technical') | |
else: | |
return "Error in Management-Technical encoding" | |
# Smart-Hard worker dummy encoding | |
if(df["smart_hardworker"].values == "smart worker"): | |
userdata_list[0].extend([1]) | |
userdata_list[0].extend([0]) | |
userdata_list[0].remove('smart worker') | |
elif(df["smart_hardworker"].values == "hard worker"): | |
userdata_list[0].extend([0]) | |
userdata_list[0].extend([1]) | |
userdata_list[0].remove('hard worker') | |
else: | |
return "Error in Smart-Hard worker encoding" | |
# Prediction | |
prediction_result_all = rfmodel.predict_proba(userdata_list) | |
# Create result dictionary with probabilities | |
result_list = { | |
"Applications Developer": float(prediction_result_all[0][0]), | |
"CRM Technical Developer": float(prediction_result_all[0][1]), | |
"Database Developer": float(prediction_result_all[0][2]), | |
"Mobile Applications Developer": float(prediction_result_all[0][3]), | |
"Network Security Engineer": float(prediction_result_all[0][4]), | |
"Software Developer": float(prediction_result_all[0][5]), | |
"Software Engineer": float(prediction_result_all[0][6]), | |
"Software Quality Assurance (QA)/ Testing": float(prediction_result_all[0][7]), | |
"Systems Security Administrator": float(prediction_result_all[0][8]), | |
"Technical Support": float(prediction_result_all[0][9]), | |
"UX Designer": float(prediction_result_all[0][10]), | |
"Web Developer": float(prediction_result_all[0][11]), | |
} | |
# Find the top predicted career | |
top_career = max(result_list, key=result_list.get) | |
# Fetch job listings for the top predicted career | |
job_suggestions = fetch_job_listings(top_career) | |
return result_list, job_suggestions | |
# Lists for dropdown menus | |
cert_list = ["app development", "distro making", "full stack", "hadoop", "information security", "machine learning", "python", "r programming", "shell programming"] | |
workshop_list = ["cloud computing", "data science", "database security", "game development", "hacking", "system designing", "testing", "web technologies"] | |
skill = ["excellent", "medium", "poor"] | |
subject_list = ["cloud computing", "Computer Architecture", "data engineering", "hacking", "IOT", "Management", "networks", "parallel computing", "programming", "Software Engineering"] | |
career_list = ["Business process analyst", "cloud computing", "developer", "security", "system developer", "testing"] | |
company_list = ["BPA", "Cloud Services", "Finance", "Product based", "product development", "SAaS services", "Sales and Marketing", "Service Based", "Testing and Maintainance Services", "Web Services"] | |
book_list = ["Action and Adventure", "Anthology", "Art", "Autobiographies", "Biographies", "Childrens", "Comics","Cookbooks","Diaries","Dictionaries","Drama","Encyclopedias","Fantasy","Guide","Health","History","Horror","Journals","Math","Mystery","Poetry","Prayer books","Religion-Spirituality","Romance","Satire","Science","Science fiction","Self help","Series","Travel","Trilogy"] | |
Choice_list = ["Management", "Technical"] | |
worker_list = ["hard worker", "smart worker"] | |
# Create Gradio interface | |
def create_output_component(): | |
return [ | |
gr.Label(label="Career Probabilities"), | |
gr.Dataframe( | |
headers=["Job Title", "Company", "Location", "Salary"], | |
label="Job Suggestions" | |
) | |
] | |
demo = gr.Interface( | |
fn=rfprediction, | |
inputs=[ | |
gr.Dropdown(["Random Forest", "Decision Tree"], label="Select Machine Learning Model"), | |
gr.Textbox(placeholder="What is your name?", label="Name"), | |
gr.Slider(minimum=1, maximum=9, value=3, step=1, label="Are you a logical thinking person?", info="Scale: 1 - 9"), | |
gr.Slider(minimum=0, maximum=6, value=0, step=1, label="Do you attend any Hackathons?", info="Scale: 0 - 6 | 0 - if not attended any"), | |
gr.Slider(minimum=1, maximum=9, value=5, step=1, label="How do you rate your coding skills?", info="Scale: 1 - 9"), | |
gr.Slider(minimum=1, maximum=9, value=3, step=1, label="How do you rate your public speaking skills/confidency?", info="Scale: 1 - 9"), | |
gr.Radio({"Yes", "No"}, type="index", label="Are you a self-learning person? *"), | |
gr.Radio({"Yes", "No"}, type="index", label="Do you take extra courses in uni (other than IT)? *"), | |
gr.Dropdown(cert_list, label="Select a certificate you took!"), | |
gr.Dropdown(workshop_list, label="Select a workshop you attended!"), | |
gr.Dropdown(skill, label="Select your read and writing skill"), | |
gr.Dropdown(skill, label="Is your memory capability good?"), | |
gr.Dropdown(subject_list, label="What subject you are interested in?"), | |
gr.Dropdown(career_list, label="Which IT-Career do you have interests in?"), | |
gr.Dropdown(company_list, label="Do you have any interested company that you intend to settle in?"), | |
gr.Radio({"Yes", "No"}, type="index", label="Do you ever seek any advices from senior or elders? *"), | |
gr.Dropdown(book_list, label="Select your interested genre of book!"), | |
gr.Radio({"Yes", "No"}, type="index", label="Are you an Introvert?| No - extrovert *"), | |
gr.Radio({"Yes", "No"}, type="index", label="Ever worked in a team? *"), | |
gr.Dropdown(Choice_list, label="Which area do you prefer: Management or Technical?"), | |
gr.Dropdown(worker_list, label="Are you a Smart worker or Hard worker?") | |
], | |
outputs=create_output_component(), | |
title="AI-Enhanced Career guidance System", | |
) | |
# Main execution | |
if __name__ == "__main__": | |
demo.launch(share=True) |