BilalSardar's picture
Update app.py
8db4600
raw
history blame
4.88 kB
from tensorflow_docs.vis import embed
from tensorflow import keras
from imutils import paths
import tensorflow as tf
import pandas as pd
import numpy as np
import imageio
import cv2
import os
from tensorflow.keras.models import model_from_json
import numpy
import gradio as gr
from googletrans import Translator
translator = Translator()
train_df = pd.read_csv("train.csv")
label_processor = keras.layers.StringLookup(num_oov_indices=0, vocabulary=np.unique(train_df["tag"]))
print(label_processor.get_vocabulary())
labels = train_df["tag"].values
labels = label_processor(labels[..., None]).numpy()
IMG_SIZE = 224
BATCH_SIZE = 64
EPOCHS = 100
MAX_SEQ_LENGTH = 20
NUM_FEATURES = 2048
json_file = open('model.json', 'r')
sequence_model_json = json_file.read()
json_file.close()
sequence_model = model_from_json(sequence_model_json)
# load weights into new model
sequence_model.load_weights("model.h5")
def crop_center_square(frame):
y, x = frame.shape[0:2]
min_dim = min(y, x)
start_x = (x // 2) - (min_dim // 2)
start_y = (y // 2) - (min_dim // 2)
return frame[start_y : start_y + min_dim, start_x : start_x + min_dim]
def load_video(path, max_frames=0, resize=(IMG_SIZE, IMG_SIZE)):
cap = cv2.VideoCapture(path)
frames = []
try:
while True:
ret, frame = cap.read()
if not ret:
break
frame = crop_center_square(frame)
frame = cv2.resize(frame, resize)
frame = frame[:, :, [2, 1, 0]]
frames.append(frame)
if len(frames) == max_frames:
break
finally:
cap.release()
return np.array(frames)
def create_clips(video_path, interval):
interval=int(interval)
NoOfClips=0
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = frame_count / fps
for i in range(0, int(duration), interval):
NoOfClips+=1
start_time = i
end_time = min(i+interval, duration)
start_frame = int(start_time * fps)
end_frame = int(end_time * fps)
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_path = f"clip_{NoOfClips}.mp4"
out = cv2.VideoWriter(output_path, fourcc, fps, (int(cap.get(3)), int(cap.get(4))))
for j in range(start_frame, end_frame):
ret, frame = cap.read()
if ret:
out.write(frame)
else:
break
out.release()
cap.release()
return NoOfClips
def build_feature_extractor():
feature_extractor = keras.applications.InceptionV3(
weights="imagenet",
include_top=False,
pooling="avg",
input_shape=(IMG_SIZE, IMG_SIZE, 3),
)
preprocess_input = keras.applications.inception_v3.preprocess_input
inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))
preprocessed = preprocess_input(inputs)
outputs = feature_extractor(preprocessed)
return keras.Model(inputs, outputs, name="feature_extractor")
feature_extractor = build_feature_extractor()
def prepare_single_video(frames):
frames = frames[None, ...]
frame_mask = np.zeros(shape=(1, MAX_SEQ_LENGTH,), dtype="bool")
frame_features = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32")
for i, batch in enumerate(frames):
video_length = batch.shape[0]
length = min(MAX_SEQ_LENGTH, video_length)
for j in range(length):
frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :])
frame_mask[i, :length] = 1 # 1 = not masked, 0 = masked
return frame_features, frame_mask
def sequence_prediction(path):
class_vocab = label_processor.get_vocabulary()
frames = load_video(os.path.join("test", path))
frame_features, frame_mask = prepare_single_video(frames)
probabilities = sequence_model.predict([frame_features, frame_mask])[0]
for i in np.argsort(probabilities)[::-1]:
#if probabilities[i]* 100>0.75:
return class_vocab[i]
print(f" {class_vocab[i]}: {probabilities[i] * 100:5.2f}%")
return class_vocab[0]
def SignTotext(video,interval):
NoofClips=create_clips(video,interval)
Text=[]
for i in range(NoofClips):
Text.append(sequence_prediction(f"clip_{i}.mp4"))
EnglishText=" ".join(Text)
translated_text = translator.translate(EnglishText, dest='ur')
return EnglishText,translated_text.text
demo=gr.Interface(fn=SignTotext,
inputs=["video",gr.inputs.Number(label="Enter Duration in which one sign is completed")],
outputs=[gr.inputs.Textbox(label="English Text"),gr.inputs.Textbox(label="Urdu text")],
title="Urdu Sign to Video")
demo.launch(debug=True)