Spaces:
Sleeping
Sleeping
File size: 2,530 Bytes
9f8ec13 92f065c f2b4b73 92f065c 9f8ec13 41700a0 9f8ec13 fb6dec7 4787c0e 9f8ec13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import cv2
import numpy as np
import os
import pickle
from deepface import DeepFace
import gradio as gr
from datetime import datetime
import fast_colorthief
import webcolors
from PIL import Image
thres = 0.45
classNames= []
classFile = 'coco.names'
with open(classFile,'rt') as f:
#classNames = f.read().rstrip('n').split('n')
classNames = f.readlines()
# remove new line characters
classNames = [x.strip() for x in classNames]
print(classNames)
configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = 'frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weightsPath,configPath)
net.setInputSize(320,320)
net.setInputScale(1.0/ 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
def main(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rgb=cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
names=[]
#object
try:
classIds, confs, bbox = net.detect(image,confThreshold=thres)
except Exception as err:
print(err)
print(classIds,bbox)
try:
if len(classIds) != 0:
for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox):
if names.count(classNames[classId-1]) == 0:
names.append(classNames[classId-1])
except Exception as err:
print(err)
#emotion
try:
face_analysis_2=DeepFace.analyze(image, actions = ['emotion'], enforce_detection=False)
names.append(face_analysis_2[0]["dominant_emotion"])
except:
print("No face")
names.append("No Face")
# #Colour
colourimage = Image.fromarray(image)
colourimage = colourimage.convert('RGBA')
colourimage = np.array(colourimage).astype(np.uint8)
palette=fast_colorthief.get_palette(colourimage)
for i in range(len(palette)):
diff={}
for color_hex, color_name in webcolors.CSS3_HEX_TO_NAMES.items():
r, g, b = webcolors.hex_to_rgb(color_hex)
diff[sum([(r - palette[i][0])**2,
(g - palette[i][1])**2,
(b - palette[i][2])**2])]= color_name
if names.count(diff[min(diff.keys())])==0:
names.append(diff[min(diff.keys())])
return ' '.join(names)
interface = gr.Interface(fn=main,
inputs=["image"],
outputs=[gr.inputs.Textbox(label='Names of person in image')],
title='Color Object Emotion ',
description='This Space:\n \n2) Detect Emotion \n3) Detect Colors.\n4) Object Detection \n')
interface.launch(inline=False) |