File size: 2,530 Bytes
9f8ec13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92f065c
 
f2b4b73
92f065c
 
 
9f8ec13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41700a0
9f8ec13
 
 
 
 
fb6dec7
4787c0e
9f8ec13
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import cv2
import numpy as np
import os
import pickle
from deepface import DeepFace
import gradio as gr
from datetime import datetime
import fast_colorthief
import webcolors
from PIL import Image



thres = 0.45
classNames= []
classFile = 'coco.names'
with open(classFile,'rt') as f:
  #classNames = f.read().rstrip('n').split('n')
  classNames = f.readlines()


# remove new line characters
classNames = [x.strip() for x in classNames]
print(classNames)
configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = 'frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weightsPath,configPath)
net.setInputSize(320,320)
net.setInputScale(1.0/ 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)



def main(image): 
  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  rgb=cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
  names=[]


  #object
  try:
        classIds, confs, bbox = net.detect(image,confThreshold=thres)
  except  Exception as err:
      print(err)
  print(classIds,bbox)
  try:
    if len(classIds) != 0:
        for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox):
          if names.count(classNames[classId-1]) == 0:
              names.append(classNames[classId-1])
  except  Exception as err:
      print(err)
  #emotion

  try:
      face_analysis_2=DeepFace.analyze(image, actions = ['emotion'], enforce_detection=False)
      names.append(face_analysis_2[0]["dominant_emotion"])
  except:
     print("No face")
     names.append("No Face")

  # #Colour

  colourimage = Image.fromarray(image)
  colourimage = colourimage.convert('RGBA')
  colourimage = np.array(colourimage).astype(np.uint8)
  palette=fast_colorthief.get_palette(colourimage)


  for i in range(len(palette)):
    diff={}
    for color_hex, color_name in webcolors.CSS3_HEX_TO_NAMES.items():
      r, g, b = webcolors.hex_to_rgb(color_hex)
      diff[sum([(r - palette[i][0])**2,
                (g - palette[i][1])**2,
                (b - palette[i][2])**2])]= color_name
    if names.count(diff[min(diff.keys())])==0:
      names.append(diff[min(diff.keys())])


  

  return ' '.join(names)
interface = gr.Interface(fn=main, 
                        inputs=["image"],
                        outputs=[gr.inputs.Textbox(label='Names of person in image')], 
                        title='Color Object Emotion ',
                        description='This Space:\n \n2) Detect Emotion \n3) Detect Colors.\n4) Object Detection \n')
                        

interface.launch(inline=False)