SMILES2PEPTIDE / app.py
yinuozhang's picture
software
45d6af3
raw
history blame
9.82 kB
import gradio as gr
import re
import pandas as pd
from io import StringIO
def remove_nested_branches(smiles):
"""Remove nested branches from SMILES string"""
result = ''
depth = 0
for char in smiles:
if char == '(':
depth += 1
elif char == ')':
depth -= 1
elif depth == 0:
result += char
return result
def identify_linkage_type(segment):
"""
Identify the type of linkage between residues
Returns: tuple (type, is_n_methylated)
"""
if 'OC(=O)' in segment:
return ('ester', False)
elif 'N(C)C(=O)' in segment:
return ('peptide', True) # N-methylated peptide bond
elif 'NC(=O)' in segment:
return ('peptide', False) # Regular peptide bond
return (None, False)
def identify_residue(segment, next_segment=None, prev_segment=None):
"""
Identify amino acid residues with modifications and special handling for Proline
Returns: tuple (residue, modifications)
"""
modifications = []
# Check for modifications in the next segment
if next_segment:
if 'N(C)C(=O)' in next_segment:
modifications.append('N-Me')
if 'OC(=O)' in next_segment:
modifications.append('O-linked')
# Special case for Proline - check for CCCN pattern and its cyclization
# Proline can appear in several patterns due to its cyclic nature
if any(pattern in segment for pattern in ['CCCN2', 'N2CCC', '[C@@H]2CCCN2', 'CCCN1', 'N1CCC']):
return ('Pro', modifications)
# Check if this segment is part of a Proline ring by looking at context
if prev_segment and next_segment:
if ('CCC' in segment and 'N' in next_segment) or ('N' in segment and 'CCC' in prev_segment):
combined = prev_segment + segment + next_segment
if re.search(r'CCCN.*C\(=O\)', combined):
return ('Pro', modifications)
# Aromatic amino acids
if 'Cc2ccccc2' in segment or 'c1ccccc1' in segment:
return ('Phe', modifications)
if 'c2ccc(O)cc2' in segment:
return ('Tyr', modifications)
if 'c1c[nH]c2ccccc12' in segment:
return ('Trp', modifications)
if 'c1cnc[nH]1' in segment:
return ('His', modifications)
# Branched chain amino acids
if 'CC(C)C[C@H]' in segment or 'CC(C)C[C@@H]' in segment:
return ('Leu', modifications)
if '[C@H](CC(C)C)' in segment or '[C@@H](CC(C)C)' in segment:
return ('Leu', modifications)
if 'C(C)C' in segment and not any(pat in segment for pat in ['CC(C)C', 'C(C)C[C@H]', 'C(C)C[C@@H]']):
return ('Val', modifications)
if 'C(C)C[C@H]' in segment or 'C(C)C[C@@H]' in segment:
return ('Ile', modifications)
# Small/polar amino acids
if ('[C@H](C)' in segment or '[C@@H](C)' in segment) and 'C(C)C' not in segment:
return ('Ala', modifications)
if '[C@H](CO)' in segment:
return ('Ser', modifications)
if '[C@H](C(C)O)' in segment or '[C@@H](C(C)O)' in segment:
return ('Thr', modifications)
if '[C@H]' in segment and not any(pat in segment for pat in ['C(C)', 'CC', 'O', 'N', 'S']):
return ('Gly', modifications)
# Rest of amino acids remain the same...
# [Previous code for other amino acids]
return (None, modifications)
def parse_peptide(smiles):
"""
Parse peptide sequence with enhanced Proline recognition
"""
# Split on peptide bonds while preserving cycle numbers
bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
segments = re.split(bond_pattern, smiles)
segments = [s for s in segments if s]
sequence = []
i = 0
while i < len(segments):
segment = segments[i]
next_segment = segments[i+1] if i+1 < len(segments) else None
prev_segment = segments[i-1] if i > 0 else None
# Skip pure bond patterns
if re.match(r'.*C\(=O\)$', segment):
i += 1
continue
residue, modifications = identify_residue(segment, next_segment, prev_segment)
if residue:
# Format residue with modifications
formatted_residue = residue
if modifications:
formatted_residue += f"({','.join(modifications)})"
sequence.append(formatted_residue)
i += 1
is_cyclic = is_cyclic_peptide(smiles)
# Print debug information
print("\nDetailed Analysis:")
print("Segments:", segments)
print("Found sequence:", sequence)
# Format the final sequence
if is_cyclic:
return f"cyclo({'-'.join(sequence)})"
return '-'.join(sequence)
def is_cyclic_peptide(smiles):
"""
Determine if SMILES represents a cyclic peptide by checking:
1. Proper cycle number pairing
2. Presence of peptide bonds between cycle points
3. Distinguishing between aromatic rings and peptide cycles
"""
cycle_info = {}
# Find all cycle numbers and their contexts
for match in re.finditer(r'(\w{3})?(\d)(\w{3})?', smiles):
number = match.group(2)
pre_context = match.group(1) or ''
post_context = match.group(3) or ''
position = match.start(2)
if number not in cycle_info:
cycle_info[number] = []
cycle_info[number].append({
'position': position,
'pre_context': pre_context,
'post_context': post_context,
'full_context': smiles[max(0, position-3):min(len(smiles), position+4)]
})
# Check each cycle
peptide_cycles = []
aromatic_cycles = []
for number, occurrences in cycle_info.items():
if len(occurrences) != 2: # Must have exactly 2 occurrences
continue
start, end = occurrences[0]['position'], occurrences[1]['position']
# Get the segment between cycle points
segment = smiles[start:end+1]
clean_segment = remove_nested_branches(segment)
# Check if this is an aromatic ring
is_aromatic = any(context['full_context'].count('c') >= 2 for context in occurrences)
# Check if this is a peptide cycle
has_peptide_bond = 'NC(=O)' in segment or 'N2C(=O)' in segment
if is_aromatic:
aromatic_cycles.append(number)
elif has_peptide_bond:
peptide_cycles.append(number)
return len(peptide_cycles) > 0, peptide_cycles, aromatic_cycles
def analyze_single_smiles(smiles):
"""Analyze a single SMILES string"""
try:
is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
sequence = parse_peptide(smiles)
details = {
'SMILES': smiles,
'Sequence': sequence,
'Is Cyclic': 'Yes' if is_cyclic else 'No',
'Peptide Cycles': ', '.join(peptide_cycles) if peptide_cycles else 'None',
'Aromatic Cycles': ', '.join(aromatic_cycles) if aromatic_cycles else 'None'
}
return details
except Exception as e:
return {
'SMILES': smiles,
'Sequence': f'Error: {str(e)}',
'Is Cyclic': 'Error',
'Peptide Cycles': 'Error',
'Aromatic Cycles': 'Error'
}
def process_input(smiles_input=None, file_obj=None):
"""Process either direct SMILES input or file input"""
results = []
# Handle direct SMILES input
if smiles_input:
result = analyze_single_smiles(smiles_input.strip())
results.append(result)
# Handle file input
if file_obj is not None:
content = file_obj.decode('utf-8')
for line in StringIO(content):
smiles = line.strip()
if smiles: # Skip empty lines
result = analyze_single_smiles(smiles)
results.append(result)
# Create formatted output
output_text = ""
for i, result in enumerate(results, 1):
output_text += f"Entry {i}:\n"
output_text += f"SMILES: {result['SMILES']}\n"
output_text += f"Sequence: {result['Sequence']}\n"
output_text += f"Is Cyclic: {result['Is Cyclic']}\n"
output_text += f"Peptide Cycles: {result['Peptide Cycles']}\n"
output_text += f"Aromatic Cycles: {result['Aromatic Cycles']}\n"
output_text += "-" * 50 + "\n"
return output_text
# Create Gradio interface
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(
label="Enter SMILES string",
placeholder="Enter SMILES notation of peptide...",
lines=2
),
gr.File(
label="Or upload a text file with SMILES",
file_types=[".txt"],
type="binary"
)
],
outputs=gr.Textbox(
label="Analysis Results",
lines=10
),
title="Peptide Structure Analyzer",
description="""
Analyze peptide structures from SMILES notation to:
1. Determine if the peptide is cyclic
2. Identify peptide cycles vs aromatic rings
3. Parse the amino acid sequence
Input: Either enter a SMILES string directly or upload a text file with multiple SMILES (one per line)
""",
examples=[
# Example cyclic peptide with Proline
["CC(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O", None],
# Example cyclic peptide with ester bond
["CC(C)C[C@@H]1OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)OC(=O)[C@H](C)N(C)C(=O)[C@@H](C)NC(=O)[C@@H](Cc2ccccc2)N(C)C1=O", None]
],
allow_flagging="never"
)
# Launch the app
if __name__ == "__main__":
iface.launch()