Upload 2 files
Browse files- app.py +37 -27
- requirements.txt +5 -0
app.py
CHANGED
@@ -1,41 +1,51 @@
|
|
1 |
|
2 |
import streamlit as st
|
3 |
-
from
|
4 |
-
|
5 |
-
from
|
|
|
|
|
6 |
|
7 |
@st.cache_resource
|
8 |
-
def
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
uploaded_file = st.file_uploader("Upload et billede", type=["jpg", "jpeg", "png"])
|
14 |
if uploaded_file:
|
15 |
-
image =
|
16 |
st.image(image, caption="Dit billede", use_column_width=True)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
prediction = st.selectbox("Vælg fødevare", ["æg", "kartoffel", "smør", "broccoli"])
|
26 |
-
else:
|
27 |
-
st.success(f"Modelen gættede: {prediction} ({confidence*100:.1f}%)")
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
-
|
36 |
-
st.markdown("
|
37 |
-
|
38 |
-
kommentar = st.text_input("Evt. kommentar")
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
1 |
|
2 |
import streamlit as st
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
7 |
+
import io
|
8 |
|
9 |
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
|
12 |
+
model = AutoModelForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
|
13 |
+
return processor, model
|
14 |
|
15 |
+
processor, model = load_model()
|
16 |
+
|
17 |
+
st.title("Kalorieestimering med AI")
|
18 |
+
|
19 |
+
uploaded_file = st.file_uploader("Upload et billede af din mad", type=["jpg", "jpeg", "png"])
|
20 |
|
|
|
21 |
if uploaded_file:
|
22 |
+
image = Image.open(uploaded_file).convert("RGB")
|
23 |
st.image(image, caption="Dit billede", use_column_width=True)
|
24 |
|
25 |
+
inputs = processor(images=image, return_tensors="pt")
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(**inputs)
|
28 |
+
|
29 |
+
logits = outputs.logits
|
30 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
31 |
+
top_probs, top_labels = torch.topk(probs, k=1)
|
32 |
|
33 |
+
confidence = top_probs[0].item() * 100
|
34 |
+
label = model.config.id2label[top_labels[0].item()]
|
|
|
|
|
|
|
35 |
|
36 |
+
st.markdown(f"### Identificeret: **{label}** ({confidence:.1f}% sikkerhed)")
|
37 |
|
38 |
+
if confidence < 70:
|
39 |
+
st.warning("Usikker klassificering – vælg manuelt")
|
40 |
+
manual = st.selectbox("Vælg fødevare manuelt", sorted(model.config.id2label.values()))
|
41 |
+
label = manual
|
42 |
|
43 |
+
st.markdown("### Antaget portionsstørrelse og estimeret energiindhold")
|
44 |
+
st.markdown(f"- 1 portion **{label}** (ca. 200g)")
|
45 |
+
st.markdown("- Estimeret energi: **~300 kcal** *(eksempelværdi)*")
|
|
|
46 |
|
47 |
+
feedback = st.radio("Er forslaget korrekt?", ["Ja", "Nej", "Ved ikke"])
|
48 |
+
if feedback == "Nej":
|
49 |
+
korrekt_label = st.text_input("Hvad forestiller billedet egentlig?")
|
50 |
+
if korrekt_label:
|
51 |
+
st.success(f"Tak for dit input: *{korrekt_label}* gemt.")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
transformers
|
5 |
+
pillow
|