Upload 5 files
Browse files- app.py +27 -36
- utils/image_utils.py +13 -0
- utils/matcher.py +2 -11
- utils/model.py +19 -0
- utils/placeholder.py +1 -0
app.py
CHANGED
@@ -1,50 +1,41 @@
|
|
1 |
|
2 |
import streamlit as st
|
3 |
-
from
|
4 |
-
from
|
5 |
-
import
|
6 |
-
import requests
|
7 |
-
from utils.matcher import oversaet_fuzzy
|
8 |
|
9 |
@st.cache_resource
|
10 |
-
def
|
11 |
-
|
12 |
-
model = AutoModelForImageClassification.from_pretrained("timm/food101-vit-base-patch16-224")
|
13 |
-
return processor, model
|
14 |
|
15 |
-
|
16 |
|
17 |
-
st.title("Kalorieestimat og Fødevareklassificering")
|
18 |
uploaded_file = st.file_uploader("Upload et billede", type=["jpg", "jpeg", "png"])
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
confidence = torch.softmax(logits, dim=-1)[0][predicted_class_idx].item()
|
31 |
|
32 |
-
|
33 |
-
label_dk = oversaet_fuzzy(label)
|
34 |
|
35 |
-
|
36 |
-
st.markdown(
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
-
if feedback:
|
44 |
st.success("Tak for din feedback!")
|
45 |
-
|
46 |
-
st.subheader("Eksempel på fødevareanalyse:")
|
47 |
-
st.markdown("- 100 g æg
|
48 |
-
- 200 g kartofler
|
49 |
-
- 50 g smør
|
50 |
-
- 25 g broccoli")
|
|
|
1 |
|
2 |
import streamlit as st
|
3 |
+
from utils.image_utils import load_image, detect_hand_and_food_area
|
4 |
+
from utils.model import load_model, classify_food
|
5 |
+
from utils.matcher import oversæt_fuzzy
|
|
|
|
|
6 |
|
7 |
@st.cache_resource
|
8 |
+
def load_model_cached():
|
9 |
+
return load_model()
|
|
|
|
|
10 |
|
11 |
+
st.title("Kalorieestimering fra billede")
|
12 |
|
|
|
13 |
uploaded_file = st.file_uploader("Upload et billede", type=["jpg", "jpeg", "png"])
|
14 |
+
if uploaded_file:
|
15 |
+
image = load_image(uploaded_file)
|
16 |
+
st.image(image, caption="Dit billede", use_column_width=True)
|
17 |
|
18 |
+
with st.spinner("Analyserer billede..."):
|
19 |
+
hand_img, food_area = detect_hand_and_food_area(image)
|
20 |
+
processor, model = load_model_cached()
|
21 |
+
prediction, confidence = classify_food(food_area, processor, model)
|
22 |
|
23 |
+
if confidence < 0.7:
|
24 |
+
st.warning("Modelen er ikke sikker – vælg manuelt:")
|
25 |
+
prediction = st.selectbox("Vælg fødevare", ["æg", "kartoffel", "smør", "broccoli"])
|
26 |
+
else:
|
27 |
+
st.success(f"Modelen gættede: {prediction} ({confidence*100:.1f}%)")
|
|
|
28 |
|
29 |
+
gram = st.number_input(f"Hvor mange gram {prediction}?", min_value=1, max_value=1000, value=100)
|
|
|
30 |
|
31 |
+
# Analyse
|
32 |
+
st.markdown("### Analyse af måltid:")
|
33 |
+
st.markdown(f"- {gram} g {prediction}")
|
34 |
|
35 |
+
# Feedback
|
36 |
+
st.markdown("### Giv feedback")
|
37 |
+
feedback = st.radio("Er gættet korrekt?", ["Ja", "Nej"])
|
38 |
+
kommentar = st.text_input("Evt. kommentar")
|
39 |
|
40 |
+
if st.button("Send feedback"):
|
|
|
41 |
st.success("Tak for din feedback!")
|
|
|
|
|
|
|
|
|
|
|
|
utils/image_utils.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
def load_image(uploaded_file):
|
7 |
+
image = Image.open(uploaded_file).convert("RGB")
|
8 |
+
return np.array(image)
|
9 |
+
|
10 |
+
def detect_hand_and_food_area(image_np):
|
11 |
+
# Dummy crop for demo
|
12 |
+
height, width, _ = image_np.shape
|
13 |
+
return image_np[0:height//2, :], image_np[height//2:, :]
|
utils/matcher.py
CHANGED
@@ -1,12 +1,3 @@
|
|
1 |
|
2 |
-
def
|
3 |
-
|
4 |
-
"mashed_potato": "kartoffelmos",
|
5 |
-
"omelette": "æg",
|
6 |
-
"broccoli": "broccoli",
|
7 |
-
"butter": "smør",
|
8 |
-
"french_fries": "pommes frites",
|
9 |
-
"pizza": "pizza",
|
10 |
-
"sushi": "sushi"
|
11 |
-
}
|
12 |
-
return oversaettelser.get(label.lower(), f"(ukendt: {label})")
|
|
|
1 |
|
2 |
+
def oversæt_fuzzy(tekst):
|
3 |
+
return tekst # dummy placeholder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/model.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def load_model():
|
6 |
+
processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
|
7 |
+
model = AutoModelForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
|
8 |
+
return processor, model
|
9 |
+
|
10 |
+
def classify_food(image, processor, model):
|
11 |
+
from PIL import Image
|
12 |
+
import numpy as np
|
13 |
+
inputs = processor(images=Image.fromarray(np.array(image)), return_tensors="pt")
|
14 |
+
with torch.no_grad():
|
15 |
+
logits = model(**inputs).logits
|
16 |
+
predicted_class_idx = logits.argmax(-1).item()
|
17 |
+
label = model.config.id2label[predicted_class_idx]
|
18 |
+
confidence = logits.softmax(dim=-1)[0, predicted_class_idx].item()
|
19 |
+
return label, confidence
|
utils/placeholder.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Placeholder for utils
|