Spaces:
Runtime error
Runtime error
Update app.py
#1
by
DanLeBossDeESGI
- opened
app.py
CHANGED
@@ -2,15 +2,315 @@ import streamlit as st
|
|
2 |
from PIL import Image, ImageDraw
|
3 |
import numpy as np
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
# Sélection de l'image
|
8 |
-
uploaded_image = st.file_uploader("Sélectionnez une image", type=["jpg", "png", "jpeg"])
|
9 |
|
10 |
-
|
11 |
-
# Charger l'image
|
12 |
-
image = Image.open(uploaded_image)
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
2 |
from PIL import Image, ImageDraw
|
3 |
import numpy as np
|
4 |
|
5 |
+
#@title Standard/Simple Continuation
|
|
|
|
|
|
|
6 |
|
7 |
+
#@markdown Text-To-Music Settings
|
|
|
|
|
8 |
|
9 |
+
#@markdown NOTE: You can enter any desired title or artist, or both
|
10 |
+
|
11 |
+
enter_desired_song_title = "Family Guy" #@param {type:"string"}
|
12 |
+
enter_desired_artist = "TV Themes" #@param {type:"string"}
|
13 |
+
|
14 |
+
#@markdown Generation Settings
|
15 |
+
|
16 |
+
number_of_tokens_to_generate = 426 #@param {type:"slider", min:30, max:2046, step:33}
|
17 |
+
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
|
18 |
+
temperature = 0.9 #@param {type:"slider", min:0.1, max:1, step:0.1}
|
19 |
+
allow_model_to_stop_generation_if_needed = False #@param {type:"boolean"}
|
20 |
+
|
21 |
+
print('=' * 70)
|
22 |
+
print('Euterpe X TTM Model Generator')
|
23 |
+
print('=' * 70)
|
24 |
+
|
25 |
+
print('Searching titles...Please wait...')
|
26 |
+
random.shuffle(AUX_DATA)
|
27 |
+
|
28 |
+
titles_index = []
|
29 |
+
|
30 |
+
for A in AUX_DATA:
|
31 |
+
titles_index.append(A[0])
|
32 |
+
|
33 |
+
search_string = ''
|
34 |
+
|
35 |
+
if enter_desired_song_title != '' and enter_desired_artist != '':
|
36 |
+
search_string = enter_desired_song_title + ' --- ' + enter_desired_artist
|
37 |
+
|
38 |
+
else:
|
39 |
+
search_string = enter_desired_song_title + enter_desired_artist
|
40 |
+
|
41 |
+
search_match = process.extract(query=search_string, choices=titles_index, limit=1)
|
42 |
+
search_index = titles_index.index(search_match[0][0])
|
43 |
+
|
44 |
+
print('Done!')
|
45 |
+
print('=' * 70)
|
46 |
+
print('Selected title:', AUX_DATA[search_index][0])
|
47 |
+
print('=' * 70)
|
48 |
+
|
49 |
+
if allow_model_to_stop_generation_if_needed:
|
50 |
+
min_stop_token = 3343
|
51 |
+
else:
|
52 |
+
min_stop_token = None
|
53 |
+
|
54 |
+
# Velocities
|
55 |
+
velocities_map = [80, 80, 70, 100, 90, 80, 100, 100, 100, 90, 110, 100]
|
56 |
+
vel_map = AUX_DATA[search_index][1]
|
57 |
+
|
58 |
+
for i in range(12):
|
59 |
+
if vel_map[i] != 0:
|
60 |
+
velocities_map[i] = vel_map[i]
|
61 |
+
|
62 |
+
# Loading data...
|
63 |
+
outy = AUX_DATA[search_index][2][3:]
|
64 |
+
|
65 |
+
block_marker = sum([(y * 8) for y in outy if y < 256]) / 1000
|
66 |
+
|
67 |
+
inp = [outy] * number_of_batches_to_generate
|
68 |
+
|
69 |
+
inp = torch.LongTensor(inp).cuda()
|
70 |
+
|
71 |
+
out = model.module.generate(inp,
|
72 |
+
number_of_tokens_to_generate,
|
73 |
+
temperature=temperature,
|
74 |
+
return_prime=True,
|
75 |
+
eos_token=min_stop_token,
|
76 |
+
verbose=True)
|
77 |
+
|
78 |
+
out0 = out.tolist()
|
79 |
+
print('=' * 70)
|
80 |
+
print('Done!')
|
81 |
+
print('=' * 70)
|
82 |
+
#======================================================================
|
83 |
+
print('Rendering results...')
|
84 |
+
|
85 |
+
for i in range(number_of_batches_to_generate):
|
86 |
+
|
87 |
+
print('=' * 70)
|
88 |
+
print('Batch #', i)
|
89 |
+
print('=' * 70)
|
90 |
+
|
91 |
+
out1 = out0[i]
|
92 |
+
|
93 |
+
print('Sample INTs', out1[:12])
|
94 |
+
print('=' * 70)
|
95 |
+
|
96 |
+
if len(out) != 0:
|
97 |
+
|
98 |
+
song = out1
|
99 |
+
song_f = []
|
100 |
+
|
101 |
+
time = 0
|
102 |
+
dur = 0
|
103 |
+
channel = 0
|
104 |
+
pitch = 0
|
105 |
+
vel = 90
|
106 |
+
|
107 |
+
for ss in song:
|
108 |
+
|
109 |
+
if ss > 0 and ss < 256:
|
110 |
+
|
111 |
+
time += ss * 8
|
112 |
+
|
113 |
+
if ss >= 256 and ss < 256+(12*128):
|
114 |
+
|
115 |
+
dur = ((ss-256) % 128) * 30
|
116 |
+
|
117 |
+
if ss >= 256+(12*128) and ss < 256+(12*128)+(12*128):
|
118 |
+
channel = (ss-(256+(12*128))) // 128
|
119 |
+
pitch = (ss-(256+(12*128))) % 128
|
120 |
+
vel = velocities_map[channel]
|
121 |
+
|
122 |
+
song_f.append(['note', time, dur, channel, pitch, vel ])
|
123 |
+
|
124 |
+
detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f,
|
125 |
+
output_signature = 'Euterpe X',
|
126 |
+
output_file_name = '/content/Euterpe-X-Music-Composition_'+str(i),
|
127 |
+
track_name='Project Los Angeles',
|
128 |
+
list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0],
|
129 |
+
number_of_ticks_per_quarter=500)
|
130 |
+
print('=' * 70)
|
131 |
+
print('Displaying resulting composition...')
|
132 |
+
print('=' * 70)
|
133 |
+
|
134 |
+
fname = '/content/Euterpe-X-Music-Composition_'+str(i)
|
135 |
+
|
136 |
+
x = []
|
137 |
+
y =[]
|
138 |
+
c = []
|
139 |
+
|
140 |
+
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver']
|
141 |
+
|
142 |
+
for s in song_f:
|
143 |
+
x.append(s[1] / 1000)
|
144 |
+
y.append(s[4])
|
145 |
+
c.append(colors[s[3]])
|
146 |
+
|
147 |
+
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
|
148 |
+
display(Audio(str(fname + '.wav'), rate=16000))
|
149 |
+
|
150 |
+
plt.figure(figsize=(14,5))
|
151 |
+
ax=plt.axes(title=fname)
|
152 |
+
ax.set_facecolor('black')
|
153 |
+
|
154 |
+
plt.scatter(x,y, c=c)
|
155 |
+
|
156 |
+
ax.axvline(x=block_marker, c='w')
|
157 |
+
|
158 |
+
plt.xlabel("Time")
|
159 |
+
plt.ylabel("Pitch")
|
160 |
+
plt.show()#@title Standard/Simple Continuation
|
161 |
+
|
162 |
+
#@markdown Text-To-Music Settings
|
163 |
+
|
164 |
+
#@markdown NOTE: You can enter any desired title or artist, or both
|
165 |
+
|
166 |
+
enter_desired_song_title = "Family Guy" #@param {type:"string"}
|
167 |
+
enter_desired_artist = "TV Themes" #@param {type:"string"}
|
168 |
+
|
169 |
+
#@markdown Generation Settings
|
170 |
+
|
171 |
+
number_of_tokens_to_generate = 426 #@param {type:"slider", min:30, max:2046, step:33}
|
172 |
+
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
|
173 |
+
temperature = 0.9 #@param {type:"slider", min:0.1, max:1, step:0.1}
|
174 |
+
allow_model_to_stop_generation_if_needed = False #@param {type:"boolean"}
|
175 |
+
|
176 |
+
print('=' * 70)
|
177 |
+
print('Euterpe X TTM Model Generator')
|
178 |
+
print('=' * 70)
|
179 |
+
|
180 |
+
print('Searching titles...Please wait...')
|
181 |
+
random.shuffle(AUX_DATA)
|
182 |
+
|
183 |
+
titles_index = []
|
184 |
+
|
185 |
+
for A in AUX_DATA:
|
186 |
+
titles_index.append(A[0])
|
187 |
+
|
188 |
+
search_string = ''
|
189 |
+
|
190 |
+
if enter_desired_song_title != '' and enter_desired_artist != '':
|
191 |
+
search_string = enter_desired_song_title + ' --- ' + enter_desired_artist
|
192 |
+
|
193 |
+
else:
|
194 |
+
search_string = enter_desired_song_title + enter_desired_artist
|
195 |
+
|
196 |
+
search_match = process.extract(query=search_string, choices=titles_index, limit=1)
|
197 |
+
search_index = titles_index.index(search_match[0][0])
|
198 |
+
|
199 |
+
print('Done!')
|
200 |
+
print('=' * 70)
|
201 |
+
print('Selected title:', AUX_DATA[search_index][0])
|
202 |
+
print('=' * 70)
|
203 |
+
|
204 |
+
if allow_model_to_stop_generation_if_needed:
|
205 |
+
min_stop_token = 3343
|
206 |
+
else:
|
207 |
+
min_stop_token = None
|
208 |
+
|
209 |
+
# Velocities
|
210 |
+
velocities_map = [80, 80, 70, 100, 90, 80, 100, 100, 100, 90, 110, 100]
|
211 |
+
vel_map = AUX_DATA[search_index][1]
|
212 |
+
|
213 |
+
for i in range(12):
|
214 |
+
if vel_map[i] != 0:
|
215 |
+
velocities_map[i] = vel_map[i]
|
216 |
+
|
217 |
+
# Loading data...
|
218 |
+
outy = AUX_DATA[search_index][2][3:]
|
219 |
+
|
220 |
+
block_marker = sum([(y * 8) for y in outy if y < 256]) / 1000
|
221 |
+
|
222 |
+
inp = [outy] * number_of_batches_to_generate
|
223 |
+
|
224 |
+
inp = torch.LongTensor(inp).cuda()
|
225 |
+
|
226 |
+
out = model.module.generate(inp,
|
227 |
+
number_of_tokens_to_generate,
|
228 |
+
temperature=temperature,
|
229 |
+
return_prime=True,
|
230 |
+
eos_token=min_stop_token,
|
231 |
+
verbose=True)
|
232 |
+
|
233 |
+
out0 = out.tolist()
|
234 |
+
print('=' * 70)
|
235 |
+
print('Done!')
|
236 |
+
print('=' * 70)
|
237 |
+
#======================================================================
|
238 |
+
print('Rendering results...')
|
239 |
+
|
240 |
+
for i in range(number_of_batches_to_generate):
|
241 |
+
|
242 |
+
print('=' * 70)
|
243 |
+
print('Batch #', i)
|
244 |
+
print('=' * 70)
|
245 |
+
|
246 |
+
out1 = out0[i]
|
247 |
+
|
248 |
+
print('Sample INTs', out1[:12])
|
249 |
+
print('=' * 70)
|
250 |
+
|
251 |
+
if len(out) != 0:
|
252 |
+
|
253 |
+
song = out1
|
254 |
+
song_f = []
|
255 |
+
|
256 |
+
time = 0
|
257 |
+
dur = 0
|
258 |
+
channel = 0
|
259 |
+
pitch = 0
|
260 |
+
vel = 90
|
261 |
+
|
262 |
+
for ss in song:
|
263 |
+
|
264 |
+
if ss > 0 and ss < 256:
|
265 |
+
|
266 |
+
time += ss * 8
|
267 |
+
|
268 |
+
if ss >= 256 and ss < 256+(12*128):
|
269 |
+
|
270 |
+
dur = ((ss-256) % 128) * 30
|
271 |
+
|
272 |
+
if ss >= 256+(12*128) and ss < 256+(12*128)+(12*128):
|
273 |
+
channel = (ss-(256+(12*128))) // 128
|
274 |
+
pitch = (ss-(256+(12*128))) % 128
|
275 |
+
vel = velocities_map[channel]
|
276 |
+
|
277 |
+
song_f.append(['note', time, dur, channel, pitch, vel ])
|
278 |
+
|
279 |
+
detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f,
|
280 |
+
output_signature = 'Euterpe X',
|
281 |
+
output_file_name = '/content/Euterpe-X-Music-Composition_'+str(i),
|
282 |
+
track_name='Project Los Angeles',
|
283 |
+
list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0],
|
284 |
+
number_of_ticks_per_quarter=500)
|
285 |
+
print('=' * 70)
|
286 |
+
print('Displaying resulting composition...')
|
287 |
+
print('=' * 70)
|
288 |
+
|
289 |
+
fname = '/content/Euterpe-X-Music-Composition_'+str(i)
|
290 |
+
|
291 |
+
x = []
|
292 |
+
y =[]
|
293 |
+
c = []
|
294 |
+
|
295 |
+
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver']
|
296 |
+
|
297 |
+
for s in song_f:
|
298 |
+
x.append(s[1] / 1000)
|
299 |
+
y.append(s[4])
|
300 |
+
c.append(colors[s[3]])
|
301 |
+
|
302 |
+
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
|
303 |
+
display(Audio(str(fname + '.wav'), rate=16000))
|
304 |
+
|
305 |
+
plt.figure(figsize=(14,5))
|
306 |
+
ax=plt.axes(title=fname)
|
307 |
+
ax.set_facecolor('black')
|
308 |
+
|
309 |
+
plt.scatter(x,y, c=c)
|
310 |
+
|
311 |
+
ax.axvline(x=block_marker, c='w')
|
312 |
+
|
313 |
+
plt.xlabel("Time")
|
314 |
+
plt.ylabel("Pitch")
|
315 |
+
plt.show()
|
316 |
|