Spaces:
Running
Running
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| SPEECH_BENCHMARK_COLS, | |
| COLS, | |
| COLS_SPEECH, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| AutoEvalColumnSpeech, | |
| ModelType, | |
| fields, | |
| WeightType, | |
| Precision, REGION_MAP | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import handle_csv_submission | |
| text_sample_path = "src/submission_samples/model_name_text.csv" | |
| speech_sample_path = "src/submission_samples/model_name_speech.csv" | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| ### Space initialisation | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, | |
| token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, | |
| token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| def init_leaderboard(dataframe, result_type='text'): | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| column_class = AutoEvalColumn if result_type == "text" else AutoEvalColumnSpeech | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(column_class)], | |
| select_columns=SelectColumns( | |
| default_selection=[c.name for c in fields(column_class) if c.displayed_by_default], | |
| cant_deselect=[c.name for c in fields(column_class) if c.never_hidden], | |
| label="Select Columns to Display:", | |
| ), | |
| # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], | |
| search_columns=[column_class.model.name], | |
| hide_columns=[c.name for c in fields(column_class) if c.hidden], | |
| filter_columns=[ | |
| # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
| # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
| # ColumnFilter( | |
| # AutoEvalColumn.params.name, | |
| # type="slider", | |
| # min=0.01, | |
| # max=150, | |
| # label="Select the number of parameters (B)", | |
| # ), | |
| # ColumnFilter( | |
| # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True | |
| # ), | |
| ], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ) | |
| leaderboard_dataframes = { | |
| region: get_leaderboard_df( | |
| EVAL_RESULTS_PATH, | |
| EVAL_REQUESTS_PATH, | |
| COLS, | |
| BENCHMARK_COLS, | |
| region if region != "All" else None, | |
| result_type="text" | |
| ) | |
| for region in REGION_MAP.values() | |
| } | |
| leaderboard_dataframes_speech = { | |
| region: get_leaderboard_df( | |
| EVAL_RESULTS_PATH, | |
| EVAL_REQUESTS_PATH, | |
| COLS_SPEECH, | |
| SPEECH_BENCHMARK_COLS, | |
| region if region != "All" else None, | |
| result_type="speech" | |
| ) | |
| for region in REGION_MAP.values() | |
| } | |
| # Preload leaderboard blocks | |
| js_switch_code = """ | |
| (displayRegion) => { | |
| const regionMap = { | |
| "All": "All", | |
| "Africa": "Africa", | |
| "Americas/Oceania": "Americas_Oceania", | |
| "Asia (S)": "Asia_S", | |
| "Asia (SE)": "Asia_SE", | |
| "Asia (W, C)": "Asia_W_C", | |
| "Asia (E)": "Asia_E", | |
| "Europe (W, N, S)": "Europe_W_N_S", | |
| "Europe (E)": "Europe_E" | |
| }; | |
| const region = regionMap[displayRegion]; | |
| document.querySelectorAll('[id^="leaderboard-"]').forEach(el => el.classList.remove("visible")); | |
| const target = document.getElementById("leaderboard-" + region); | |
| if (target) { | |
| target.classList.add("visible"); | |
| // π§ Trigger reflow to fix row cutoff | |
| void target.offsetHeight; // Trigger reflow | |
| target.style.display = "none"; // Hide momentarily | |
| requestAnimationFrame(() => { | |
| target.style.display = ""; | |
| }); | |
| } | |
| } | |
| """ | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π mSTEB Text Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
| with gr.Row(): | |
| region_dropdown = gr.Dropdown( | |
| choices=list(REGION_MAP.keys()), | |
| label="Select Region", | |
| value="All", | |
| interactive=True, | |
| ) | |
| # Region-specific leaderboard containers | |
| for display_name, region_key in REGION_MAP.items(): | |
| with gr.Column( | |
| elem_id=f"leaderboard-{region_key}", | |
| elem_classes=["visible"] if region_key == "All" else [] | |
| ): | |
| init_leaderboard(leaderboard_dataframes[region_key], result_type="text") | |
| # JS hook to toggle visible leaderboard | |
| region_dropdown.change(None, js=js_switch_code, inputs=[region_dropdown]) | |
| with gr.TabItem("π£οΈ mSTEB Speech Benchmark", elem_id="speech-benchmark-tab-table", id=1): | |
| with gr.Row(): | |
| speech_region_dropdown = gr.Dropdown( | |
| choices=list(REGION_MAP.keys()), | |
| label="Select Region", | |
| value="All", | |
| interactive=True, | |
| ) | |
| for display_name, region_key in REGION_MAP.items(): | |
| with gr.Column( | |
| elem_id=f"speech-leaderboard-{region_key}", | |
| elem_classes=["visible"] if region_key == "All" else [] | |
| ): | |
| init_leaderboard(leaderboard_dataframes_speech[region_key], result_type='speech') | |
| speech_region_dropdown.change( | |
| None, | |
| js=js_switch_code.replace("leaderboard-", "speech-leaderboard-"), | |
| inputs=[speech_region_dropdown] | |
| ) | |
| with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| with gr.Row(): | |
| gr.File( | |
| label="π Sample Text CSV", | |
| value=text_sample_path, | |
| interactive=False, | |
| file_types=[".csv"] | |
| ) | |
| gr.File( | |
| label="π Sample Speech CSV", | |
| value=speech_sample_path, | |
| interactive=False, | |
| file_types=[".csv"] | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| result_type = gr.Radio(choices=["text", "speech"], label="Result Type", value="text") | |
| csv_file = gr.File(label="Upload CSV File", file_types=[".csv"]) | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| handle_csv_submission, | |
| [ | |
| model_name_textbox, | |
| csv_file, | |
| result_type, | |
| ], | |
| submission_result, | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() | |