Bot_Wa_Blast / app.py
Dyna-99's picture
Update app.py
a69dde2 verified
import json
import random
import pickle
import numpy as np
import re
from flask import Flask, request, jsonify
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
# import os
# os.environ['HF_HOME'] = '/tmp/huggingface'
# os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface/transformers'
# os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface/datasets'
# os.environ['HF_METRICS_CACHE'] = '/tmp/huggingface/metrics'
class ImprovedBPJSChatbot:
def __init__(self):
self.load_models()
self.load_intents()
def load_models(self):
"""Load semua model yang diperlukan"""
print("Memuat model dan konfigurasi...")
# Load konfigurasi
with open('model_config.pkl', 'rb') as f:
config = pickle.load(f)
# Load sentence transformer
self.st_model = SentenceTransformer("Dyna-99/local-st-model")
self.preprocessing_enabled = config['preprocessing_enabled']
# Load classifier
with open('svm_model.pkl', 'rb') as f:
self.clf = pickle.load(f)
# Load label encoder
with open('label_encoder.pkl', 'rb') as f:
self.label_encoder = pickle.load(f)
print("Semua model berhasil dimuat!")
def load_intents(self):
"""Load data intents untuk responses"""
with open('intents.json', 'r', encoding='utf-8') as f:
self.intents_data = json.load(f)
self.tag_responses = {intent['tag']: intent['responses'] for intent in self.intents_data['intents']}
# Buat embeddings untuk semua patterns (untuk similarity fallback)
self.pattern_embeddings = []
self.pattern_tags = []
for intent in self.intents_data['intents']:
for pattern in intent['patterns']:
processed_pattern = self.preprocess_text(pattern) if self.preprocessing_enabled else pattern
embedding = self.st_model.encode(processed_pattern)
self.pattern_embeddings.append(embedding)
self.pattern_tags.append(intent['tag'])
self.pattern_embeddings = np.array(self.pattern_embeddings)
def preprocess_text(self, text):
"""Preprocessing teks yang sama dengan training"""
text = text.lower()
# Normalisasi singkatan
text = re.sub(r'\bjkk\b', 'jaminan kecelakaan kerja', text)
text = re.sub(r'\bjkm\b', 'jaminan kematian', text)
text = re.sub(r'\bjht\b', 'jaminan hari tua', text)
text = re.sub(r'\bjp\b', 'jaminan pensiun', text)
text = re.sub(r'\bbpjs\b', 'bpjs ketenagakerjaan', text)
# Hapus karakter khusus
text = re.sub(r'[^\w\s]', ' ', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def get_prediction_confidence(self, msg_embedding):
"""Dapatkan prediksi dengan confidence score"""
# Prediksi probabilitas
probabilities = self.clf.predict_proba(msg_embedding)[0]
max_prob = np.max(probabilities)
predicted_class = np.argmax(probabilities)
predicted_tag = self.label_encoder.inverse_transform([predicted_class])[0]
return predicted_tag, max_prob
def similarity_fallback(self, msg_embedding, threshold=0.7):
"""Fallback menggunakan cosine similarity"""
similarities = cosine_similarity(msg_embedding, self.pattern_embeddings)[0]
max_similarity_idx = np.argmax(similarities)
max_similarity = similarities[max_similarity_idx]
if max_similarity >= threshold:
return self.pattern_tags[max_similarity_idx], max_similarity
return 'fallback', max_similarity
def get_contextual_response(self, tag, user_message):
"""Pilih response yang paling kontekstual"""
responses = self.tag_responses.get(tag, self.tag_responses['fallback'])
# Jika hanya ada satu response, return langsung
if len(responses) == 1:
return responses[0]
# Pilih response berdasarkan kata kunci dalam pesan user
user_words = set(user_message.lower().split())
best_response = responses[0]
best_score = 0
for response in responses:
response_words = set(response.lower().split())
# Hitung kesamaan kata
common_words = user_words.intersection(response_words)
score = len(common_words)
if score > best_score:
best_score = score
best_response = response
# Jika tidak ada yang cocok, pilih random
if best_score == 0:
return random.choice(responses)
return best_response
def generate_response(self, message):
"""Generate response dengan multiple strategies"""
if not message.strip():
return "Tolong kirim sebuah pesan."
# Preprocessing
processed_msg = self.preprocess_text(message) if self.preprocessing_enabled else message
msg_embedding = self.st_model.encode(processed_msg).reshape(1, -1)
# Strategy 1: SVM prediction dengan confidence
predicted_tag, confidence = self.get_prediction_confidence(msg_embedding)
# Strategy 2: Similarity fallback jika confidence rendah
if confidence < 0.6: # Threshold bisa di-adjust
fallback_tag, similarity = self.similarity_fallback(msg_embedding)
if similarity > confidence:
predicted_tag = fallback_tag
# Strategy 3: Contextual response selection
response = self.get_contextual_response(predicted_tag, message)
# Logging untuk debugging
print(f"Input: {message}")
print(f"Processed: {processed_msg}")
print(f"Predicted tag: {predicted_tag} (confidence: {confidence:.3f})")
return response
# Inisialisasi chatbot
chatbot = ImprovedBPJSChatbot()
# Flask app
app = Flask(__name__)
@app.route('/chat', methods=['POST'])
def chat():
try:
msg = request.json.get("message", "").strip()
response = chatbot.generate_response(msg)
return jsonify({"reply": response})
except Exception as e:
print(f"Error: {e}")
return jsonify({"reply": "Maaf, terjadi kesalahan sistem. Silakan coba lagi."})
@app.route('/health', methods=['GET'])
def health():
return jsonify({"status": "healthy", "model": "BPJS Chatbot Improved"})
if __name__ == '__main__':
app.run(host='0.0.0.0',port=7860, debug=False) #ganti dari 5000 ke 7860