File size: 27,583 Bytes
5177cd2
e64e7b1
 
4e79574
e64e7b1
8ea457b
fc74a31
 
 
4e79574
e64e7b1
 
 
 
5177cd2
 
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64e7b1
4e79574
 
 
 
 
 
 
e64e7b1
4e79574
e64e7b1
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64e7b1
aed021b
4e79574
 
 
 
a319c62
8ea457b
 
 
 
4e79574
 
e64e7b1
8ea457b
4e79574
 
 
 
 
 
 
 
 
 
8ea457b
4e79574
 
 
 
8ea457b
0a040f1
 
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a040f1
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
903eadb
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
903eadb
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aed021b
4e79574
2d01a29
 
4e79574
2d01a29
 
 
 
 
 
 
 
 
4e79574
 
e64e7b1
4e79574
 
 
 
 
 
 
 
 
 
 
0a040f1
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a040f1
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64e7b1
4e79574
 
 
 
 
 
 
 
 
5177cd2
4e79574
 
 
 
 
 
 
 
 
f6dce38
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
f6dce38
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6dce38
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5177cd2
e64e7b1
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64e7b1
 
4e79574
e64e7b1
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64e7b1
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64e7b1
4e79574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74a31
4e79574
903eadb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from datasets import load_dataset, get_dataset_config_names
import torch
import re
import json
import pandas as pd
import matplotlib.pyplot as plt
import traceback # Import traceback for detailed error logging

# Cache to avoid reloading the model
model_cache = {}

HF_TOKEN = os.environ.get("HF_TOKEN")

# --- Constants for Benchmarks ---
MMLU_DATASET = "cais/mmlu"
MMLU_PRO_DATASET = "cais/mmlu_pro"
# Humanity's Last Exam is a composite benchmark, not a single dataset readily available like MMLU/MMLU-Pro.
# For this implementation, we will focus on MMLU and MMLU-Pro, which are direct datasets.
# Integrating HLE would require evaluating across multiple specific datasets.

def get_all_benchmark_options():
    """
    Dynamically fetches all available subjects for MMLU and MMLU-Pro.
    Returns a dictionary mapping benchmark dataset IDs to their subjects,
    and a flattened list suitable for a Gradio dropdown.
    """
    all_options = {}
    gr_dropdown_options = []

    # Get subjects for MMLU
    try:
        mmlu_subjects = get_dataset_config_names(MMLU_DATASET, token=HF_TOKEN)
        all_options[MMLU_DATASET] = ["ALL"] + mmlu_subjects
        gr_dropdown_options.extend([f"MMLU - {s}" for s in all_options[MMLU_DATASET]])
    except Exception as e:
        print(f"Warning: Could not load MMLU dataset configs. Error: {e}")
        all_options[MMLU_DATASET] = []

    # Get subjects for MMLU-Pro
    try:
        mmlu_pro_subjects = get_dataset_config_names(MMLU_PRO_DATASET, token=HF_TOKEN)
        all_options[MMLU_PRO_DATASET] = ["ALL"] + mmlu_pro_subjects
        gr_dropdown_options.extend([f"MMLU-Pro - {s}" for s in all_options[MMLU_PRO_DATASET]])
    except Exception as e:
        print(f"Warning: Could not load MMLU-Pro dataset configs. It might not be accessible or available. Error: {e}")
        all_options[MMLU_PRO_DATASET] = []

    return all_options, gr_dropdown_options

# Initialize these once globally when the app starts
ALL_BENCHMARK_SUBJECTS, GRADIO_DROPDOWN_OPTIONS = get_all_benchmark_options()


def load_model(model_id):
    """
    Loads a Hugging Face model and its tokenizer, then creates a text-generation pipeline.
    Uses a cache to avoid re-loading if the model is already in memory.
    Provides Gradio Info/Error messages for user feedback.
    Raises an exception if model loading fails.
    """
    gr.Info(f"Attempting to load model: {model_id}...")
    if model_id in model_cache:
        gr.Info(f"Model '{model_id}' already loaded from cache.")
        return model_cache[model_id]
    try:
        # Load tokenizer and model, using bfloat16 if CUDA is available for efficiency
        tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            token=HF_TOKEN,
            torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
        ).to("cuda" if torch.cuda.is_available() else "cpu")
        
        # Create a text-generation pipeline
        generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
        
        # Cache the loaded generator
        model_cache[model_id] = generator
        gr.Info(f"Model '{model_id}' loaded successfully.")
        return generator
    except Exception as e:
        # Re-raise the exception to be caught by the outer run_evaluation try-except
        raise ValueError(f"Failed to load model '{model_id}'. Please verify the model ID and your Hugging Face token. Error: {e}")


def format_prompt(item):
    """
    Formats a single MMLU/MMLU-Pro question item into a clear prompt for the LLM.
    The prompt is designed for the model to output a single letter answer (A, B, C, D).
    """
    prompt = f"""{item['question']}
A. {item['choices'][0]}
B. {item['choices'][1]}
C. {item['choices'][2]}
D. {item['choices'][3]}
Answer:"""
    return prompt, item['answer'] # Returns the prompt string and the correct choice index (0-3)

def extract_choice_letter(output):
    """
    Extracts the most likely choice letter (A, B, C, D) from the model's generated output.
    It prioritizes an exact match after "Answer:", then looks for any single capital letter.
    """
    # Look for "Answer: X" pattern first (e.g., "Answer: A" or "Answer: B")
    match = re.search(r"Answer:\s*([ABCD])", output, re.IGNORECASE) # Added IGNORECASE for robustness
    if match:
        return match.group(1).upper() # Ensure it's uppercase

    # Fallback: look for a single capital letter A-D anywhere in the output
    match = re.search(r"\b([ABCD])\b", output.strip())
    if match:
        return match.group(1)
    
    return None # Return None if no valid choice letter is found

def get_choice_letter(index):
    """Converts a numerical choice index (0-3) to a capital letter (A-D)."""
    if 0 <= index <= 3:
        return chr(ord('A') + index)
    return None # Return None for invalid indices

def evaluate_single_subject(generator, dataset_id, subject, sample_count, progress):
    """
    Evaluates a given model generator on a specific subject from a specified dataset.
    
    Args:
        generator: The Hugging Face pipeline for text generation.
        dataset_id (str): The ID of the dataset (e.g., "cais/mmlu", "cais/mmlu_pro").
        subject (str): The specific subject/config name within the dataset.
        sample_count (int): The maximum number of samples to evaluate.
        progress (gr.Progress): Gradio progress tracker.

    Returns:
        tuple: (accuracy, list_of_detailed_results)
    Raises:
        Exception: If dataset loading fails.
    """
    gr.Info(f"Loading dataset: {dataset_id} - {subject}...")
    try:
        # Load the "test" split of the dataset
        dataset = load_dataset(dataset_id, subject, token=HF_TOKEN)["test"]
    except Exception as e:
        # Re-raise the exception to be caught by the outer run_evaluation try-except
        raise RuntimeError(f"Failed to load dataset '{dataset_id}' for subject '{subject}'. Error: {e}")

    # Limit the number of samples and shuffle for consistent evaluation across runs
    num_samples_to_evaluate = min(sample_count, len(dataset))
    dataset = dataset.shuffle(seed=42).select(range(num_samples_to_evaluate))

    correct_count = 0
    subject_results = []

    # Iterate through the selected samples with a progress bar
    for i, item in enumerate(progress.tqdm(dataset, desc=f"Processing {subject} samples")):
        prompt, answer_idx = format_prompt(item)
        expected_letter = get_choice_letter(answer_idx)

        # Generate only 1 new token for the answer (A, B, C, D)
        # do_sample=False ensures deterministic output for a given prompt (greedy decoding)
        output_raw = generator(prompt, max_new_tokens=1, do_sample=False)[0]["generated_text"]
        
        # Check for potential reasoning model output
        is_reasoning_model_output = '<' in output_raw or re.search(r"\b(because|therefore|thus|reasoning)\b", output_raw, re.IGNORECASE) is not None
        
        # Extract the predicted letter from the model's raw output
        predicted_letter = extract_choice_letter(output_raw)

        is_correct = (predicted_letter == expected_letter)
        correct_count += is_correct
        
        # Store detailed results for logging and display
        subject_results.append({
            "question": item['question'],
            "choices": item['choices'],
            "model_raw_output": output_raw.strip(),
            "expected_answer_letter": expected_letter,
            "predicted_answer_letter": predicted_letter,
            "is_correct": is_correct,
            "is_reasoning_model_output": is_reasoning_model_output # Store the flag
        })
    
    # Calculate accuracy for the current subject
    accuracy = (correct_count / len(dataset)) * 100 if len(dataset) > 0 else 0
    return accuracy, subject_results


def run_evaluation(model_id, selected_benchmark_subject, sample_count, progress=gr.Progress()):
    """
    Main function to orchestrate the evaluation process.
    Handles single subject or 'ALL' subjects evaluation for MMLU/MMLU-Pro.
    Returns Gradio.update objects to control UI component visibility and content.
    """
    gr.Info("Starting evaluation...")
    if not model_id:
        gr.Warning("Please enter a Hugging Face Model ID before running the evaluation.")
        # Return updates to hide logs/debug and show empty results
        return "", gr.update(value="", visible=False), gr.update(visible=False), \
               gr.update(visible=False), gr.update(visible=False), gr.update(value="", visible=False)

    # Parse the selected benchmark and subject from the dropdown string
    parts = selected_benchmark_subject.split(" - ")
    if len(parts) != 2:
        gr.Error("Invalid benchmark selection format. Please select from the dropdown.")
        return "", gr.update(value="", visible=False), gr.update(visible=False), \
               gr.update(visible=False), gr.update(visible=False), gr.update(value="", visible=False)
    
    benchmark_name = parts[0]
    subject_name = parts[1]

    dataset_id_map = {
        "MMLU": MMLU_DATASET,
        "MMLU-Pro": MMLU_PRO_DATASET
    }
    current_dataset_id = dataset_id_map.get(benchmark_name)

    if not current_dataset_id:
        gr.Error(f"Unknown benchmark selected: {benchmark_name}. This should not happen.")
        return "", gr.update(value="", visible=False), gr.update(visible=False), \
               gr.update(visible=False), gr.update(visible=False), gr.update(value="", visible=False)

    try:
        generator = load_model(model_id) # This function will raise an exception on failure
        
        all_evaluation_results = []
        total_correct_overall = 0
        total_samples_overall = 0
        eval_summary_lines = []

        if subject_name == "ALL":
            subjects_to_evaluate = ALL_BENCHMARK_SUBJECTS.get(current_dataset_id, [])
            if "ALL" in subjects_to_evaluate:
                subjects_to_evaluate.remove("ALL")

            if not subjects_to_evaluate:
                gr.Warning(f"No subjects found to evaluate for '{benchmark_name}'.")
                return "", gr.update(value="", visible=False), gr.update(visible=False), \
                       gr.update(visible=False), gr.update(visible=False), gr.update(value="", visible=False)

            for i, sub in enumerate(progress.tqdm(subjects_to_evaluate, desc=f"Evaluating ALL {benchmark_name} subjects")):
                gr.Info(f"Evaluating {benchmark_name} - {sub} ({i+1}/{len(subjects_to_evaluate)})...")
                try:
                    accuracy, subject_details = evaluate_single_subject(generator, current_dataset_id, sub, sample_count, progress)
                    all_evaluation_results.extend(subject_details)

                    num_evaluated_samples = len(subject_details)
                    num_correct_in_subject = sum(d['is_correct'] for d in subject_details)

                    total_correct_overall += num_correct_in_subject
                    total_samples_overall += num_evaluated_samples
                    eval_summary_lines.append(f"- {benchmark_name} - {sub}: {accuracy:.2f}% ({num_correct_in_subject}/{num_evaluated_samples} samples)")
                except Exception as e:
                    gr.Error(f"Skipping {benchmark_name} - {sub} due to an error: {e}")
                    eval_summary_lines.append(f"- {benchmark_name} - {sub}: Error during evaluation.")
                    continue

            overall_accuracy = (total_correct_overall / total_samples_overall) * 100 if total_samples_overall > 0 else 0
            score_string = f"Overall Average Accuracy for {benchmark_name}: {overall_accuracy:.2f}% across {total_samples_overall} total samples.\n\n"
            score_string += "Detailed breakdown:\n" + "\n".join(eval_summary_lines)

        else:
            accuracy, subject_details = evaluate_single_subject(generator, current_dataset_id, subject_name, sample_count, progress)
            all_evaluation_results.extend(subject_details)
            overall_accuracy = accuracy
            num_evaluated_samples = len(subject_details)
            score_string = f"Accuracy for {benchmark_name} - {subject_name}: {accuracy:.2f}% out of {num_evaluated_samples} samples."

        # Format detailed results for display in the text box
        # The key change here is to wrap the entire multi-line string construction for each item
        # within parentheses to ensure it's treated as a single element in the list comprehension.
        formatted_details = "\n\n".join([
            (
                f"### Question:\n{item['question']}\n\n"
                + f"**Choices:**\n" + "\n".join([f"{get_choice_letter(i)}. {c}" for i, c in enumerate(item['choices'])]) + "\n\n"
                + (f"**Note:** Reasoning models are currently not fully supported for single-letter extraction. The original model output followed:\n" if item.get('is_reasoning_model_output') else "")
                + f"**Model Raw Output:** {item['model_raw_output']}\n"
                + f"**Expected Answer:** {item['expected_answer_letter']}\n"
                + f"**Predicted Answer:** {item['predicted_answer_letter']}\n"
                + f"**Correct:** {'Yes' if item['is_correct'] else 'No'}"
            )
            for item in all_evaluation_results
        ])

        # Record the evaluation result to a JSONL file for the leaderboard
        record = {
            "model_id": model_id,
            "benchmark": benchmark_name,
            "subject": subject_name,
            "accuracy": overall_accuracy,
            "sample_count": total_samples_overall if subject_name == "ALL" else len(all_evaluation_results),
            "timestamp": pd.Timestamp.now().isoformat()
        }
        with open("eval.jsonl", "a") as f:
            f.write(json.dumps(record) + "\n")

        gr.Info("Evaluation completed successfully!")
        return score_string, \
               gr.update(value="", visible=False), gr.update(visible=False), \
               gr.update(visible=True), gr.update(visible=True), gr.update(value=formatted_details, visible=False)

    except Exception as e:
        error_message = str(e)
        detailed_error_traceback = traceback.format_exc()
        gr.Error("An error occurred during evaluation.")
        
        # Return updates for error state
        return "Error occurred during evaluation. We'll evaluate for you! If this persists, please open a community support tab for assistance.", \
               gr.update(value=detailed_error_traceback, visible=True), gr.update(visible=True), \
               gr.update(visible=False), gr.update(visible=False), gr.update(value="", visible=False)

def save_text(text_content):
    """Saves the provided text content to a file and returns the file path for download."""
    if not text_content:
        gr.Warning("No evaluation results to download.")
        return None
    file_path = "evaluation_results.txt"
    try:
        with open(file_path, "w") as f:
            f.write(text_content)
        return file_path
    except Exception as e:
        gr.Error(f"Error saving file: {e}")
        return None

def load_leaderboard():
    """
    Loads evaluation data from 'eval.jsonl', computes average accuracy per model,
    and prepares data for the leaderboard plot and table.
    """
    try:
        # Read the JSONL file into a pandas DataFrame
        df = pd.read_json("eval.jsonl", lines=True)
        
        # Calculate average accuracy per model across all recorded evaluations
        df_avg = df.groupby("model_id")["accuracy"].mean().reset_index()
        df_avg.columns = ["Model ID", "Average Accuracy (%)"]
        
        # Sort models by average accuracy in descending order
        df_sorted = df_avg.sort_values(by="Average Accuracy (%)", ascending=False)
        
        # Select top 10 models for the bar chart
        top_models = df_sorted.head(10)

        # Create the matplotlib plot
        fig, ax = plt.subplots(figsize=(10, 6)) # Adjust figure size for better readability
        # For horizontal bars, it's often better to plot data sorted in ascending order
        # so the highest bar appears at the top of the chart.
        top_models_plot = top_models.sort_values(by="Average Accuracy (%)", ascending=True)

        ax.barh(top_models_plot['Model ID'], top_models_plot['Average Accuracy (%)'], color='#007bff') # Use a nice blue color
        ax.set_xlabel("Average Accuracy (%)", fontsize=12)
        ax.set_ylabel("Model ID", fontsize=12)
        ax.set_title("Top 10 Models by Average MMLU/MMLU-Pro Accuracy", fontsize=14)
        ax.set_xlim(0, 100) # Ensure accuracy scale is 0-100%
        ax.tick_params(axis='x', labelsize=10)
        ax.tick_params(axis='y', labelsize=10)
        ax.grid(axis='x', linestyle='--', alpha=0.7) # Add grid lines
        plt.tight_layout() # Adjust layout to prevent labels overlapping

        # Return the figure and the sorted dataframe as a list of dictionaries for Gradio Dataframe
        return fig, df_sorted.to_dict('records')
    except FileNotFoundError:
        gr.Warning("No evaluation data found yet. Run an evaluation to populate the leaderboard!")
        return plt.figure(), pd.DataFrame(columns=["Model ID", "Average Accuracy (%)"]).to_dict('records')
    except Exception as e:
        gr.Error(f"Error loading leaderboard: {e}")
        # Return an empty plot and dataframe in case of any other error
        return plt.figure(), pd.DataFrame(columns=["Model ID", "Average Accuracy (%)"]).to_dict('records')


# --- Gradio Interface Definition ---
with gr.Blocks(css="""
    /* General body and container styling */
    body { font-family: 'Inter', sans-serif; background-color: #f0f2f5; margin: 0; padding: 20px; }
    .gradio-container { 
        max-width: 1200px; 
        margin: 20px auto; 
        padding: 30px; 
        box-shadow: 0 8px 16px rgba(0,0,0,0.15); 
        border-radius: 12px; 
        background-color: #ffffff; 
        border: 1px solid #e0e0e0;
    }
    
    /* Headings */
    h1 { 
        color: #2c3e50; 
        text-align: center; 
        margin-bottom: 30px; 
        font-size: 2.5em; 
        font-weight: 700; 
        letter-spacing: -0.02em; 
    }
    h3 { color: #34495e; font-size: 1.2em; margin-bottom: 10px; }

    /* Markdown text */
    .markdown-text { text-align: center; color: #555; line-height: 1.6; }
    .markdown-text div { font-size: 1.1em; }

    /* Buttons */
    .gr-button { 
        background-color: #007bff; /* Primary blue */
        color: white; 
        border: none; 
        padding: 12px 25px; 
        border-radius: 8px; 
        cursor: pointer; 
        transition: background-color 0.3s ease, transform 0.2s ease; 
        font-size: 1.1em;
        font-weight: 600;
        box-shadow: 0 4px 8px rgba(0,0,0,0.1);
    }
    .gr-button:hover { 
        background-color: #0056b3; /* Darker blue on hover */
        transform: translateY(-2px); /* Slight lift effect */
    }
    .gr-button:active {
        transform: translateY(0);
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }
    /* Specific button styling for debug/show details */
    #debug-button, #show-details-button {
        background-color: #6c757d; /* Grey for secondary actions */
    }
    #debug-button:hover, #show-details-button:hover {
        background-color: #5a6268;
    }
    #download-button {
        background-color: #28a745; /* Green for download */
    }
    #download-button:hover {
        background-color: #218838;
    }


    /* Input/Output Boxes */
    .gr-box { 
        border: 1px solid #dee2e6; 
        border-radius: 10px; 
        padding: 20px; 
        margin-bottom: 20px; 
        background-color: #fdfdfd; 
        box-shadow: inset 0 1px 3px rgba(0,0,0,0.05);
    }
    .gr-output-text { 
        white-space: pre-wrap; 
        word-wrap: break-word; 
        background-color: #f9f9fb; 
        border: 1px solid #e9ecef; 
        border-radius: 8px; 
        padding: 15px; 
        min-height: 100px; /* Ensure a minimum height */
    }
    /* Specific error output style */
    #error-message-output {
        background-color: #ffe0e0;
        border-color: #ff9999;
        color: #cc0000;
    }


    /* Labels for inputs */
    .gr-textbox label, .gr-dropdown label, .gr-slider label { 
        font-weight: 600; 
        color: #495057; 
        margin-bottom: 8px; 
        display: block; 
        font-size: 1em;
    }

    /* Tab styling */
    .gr-tab-item { padding: 25px; } /* More padding inside tabs */
    .gr-tabs-nav button {
        font-weight: 600;
        font-size: 1.1em;
        padding: 10px 20px;
        border-top-left-radius: 8px;
        border-top-right-radius: 8px;
    }
""") as demo:
    gr.Markdown("""
    # πŸ€– LLM Benchmark Evaluator
    """)

    with gr.Tabs():
        with gr.TabItem("πŸš€ Run Evaluation"):
            gr.Markdown("""
            <div style="text-align: center; margin-bottom: 20px; color: #666; font-size: 1.1em;">
                Enter your Hugging Face Model ID, choose a benchmark (MMLU or MMLU-Pro),
                select a subject (or 'ALL' for a comprehensive evaluation),
                and specify the number of samples per subject.
            </div>
            """)
            
            with gr.Column(elem_classes="gr-box"):
                model_id_input = gr.Textbox(
                    label="Your Hugging Face Model ID", 
                    placeholder="e.g., mistralai/Mistral-7B-Instruct-v0.2", 
                    interactive=True
                )
                with gr.Row():
                    benchmark_subject_dropdown = gr.Dropdown(
                        label="Choose Benchmark and Subject",
                        choices=GRADIO_DROPDOWN_OPTIONS,
                        value="MMLU - ALL", # Default to MMLU ALL for initial load
                        interactive=True,
                        min_width=400 # Ensure sufficient width
                    )
                    sample_count_slider = gr.Slider(
                        label="Number of Samples per Subject (1-100)",
                        minimum=1,
                        maximum=100, 
                        value=10, # Default to 10 samples
                        step=1,
                        interactive=True,
                        min_width=200
                    )
                run_button = gr.Button("πŸš€ Run Evaluation", elem_classes="gr-button")

            with gr.Column(elem_classes="gr-box"):
                acc_output = gr.Textbox(
                    label="Benchmark Accuracy Results", 
                    interactive=False, 
                    elem_classes="gr-output-text", 
                    lines=5,
                    placeholder="Evaluation results will appear here."
                )
                
                # Container for debug info, initially hidden
                with gr.Column(visible=False, elem_id="debug-error-column") as debug_error_column:
                    error_message_output = gr.Textbox(
                        label="Debug Information (Error Details)", 
                        lines=10, interactive=False, elem_classes="gr-output-text", elem_id="error-message-output",
                        placeholder="Error details will appear here if an error occurs."
                    )
                    debug_button = gr.Button("πŸ› Hide Debug Info", visible=True, elem_id="debug-button", elem_classes="gr-button")

                with gr.Row():
                    show_details_button = gr.Button("πŸ” Show Detailed Logs", visible=False, elem_id="show-details-button", elem_classes="gr-button")
                    download_button = gr.Button("πŸ“₯ Download Full Evaluation Logs", visible=False, elem_id="download-button", elem_classes="gr-button")

                # Detailed output, initially hidden
                detail_output = gr.Textbox(
                    label="Detailed Evaluation Logs", 
                    lines=20, 
                    interactive=False, 
                    elem_classes="gr-output-text",
                    placeholder="Detailed logs for each question will appear here upon successful evaluation.",
                    visible=False # Initially hidden
                )
                
            # Define button click actions
            run_button.click(
                run_evaluation,
                inputs=[model_id_input, benchmark_subject_dropdown, sample_count_slider],
                outputs=[
                    acc_output, 
                    error_message_output, debug_error_column, # For error state
                    show_details_button, download_button, detail_output # For success state
                ]
            )

            # Toggle visibility of detail_output
            show_details_button.click(
                lambda s: gr.update(visible=not s), # Toggle visibility
                inputs=[detail_output], # Pass the component itself as input
                outputs=[detail_output] # The component to update
            )
            # Change button text based on visibility
            show_details_button.click(
                lambda s: "πŸ™ˆ Hide Detailed Logs" if not s else "πŸ” Show Detailed Logs",
                inputs=[detail_output],
                outputs=[show_details_button]
            )

            # Toggle visibility of debug error column
            debug_button.click(
                lambda s: gr.update(visible=not s), # Toggle visibility
                inputs=[debug_error_column], # Pass the component itself as input
                outputs=[debug_error_column] # The component to update
            )
            # Change debug button text based on visibility
            debug_button.click(
                lambda s: "πŸ› Show Debug Info" if not s else "πŸ› Hide Debug Info",
                inputs=[debug_error_column],
                outputs=[debug_button]
            )

            download_button.click(
                save_text,
                inputs=[detail_output],
                outputs=gr.File(label="Download Evaluation Results", file_count="single", type="filepath")
            )

        with gr.TabItem("πŸ“Š Leaderboard"):
            gr.Markdown("""
            <div style="text-align: center; margin-bottom: 20px; color: #666; font-size: 1.1em;">
                See how different models perform on average across all evaluated benchmarks.
                This leaderboard updates with every new evaluation.
            </div>
            """)
            with gr.Row():
                leaderboard_plot_output = gr.Plot(label="Top 10 Models by Average Accuracy", scale=2) # Scale for better visibility
                leaderboard_table_output = gr.Dataframe(
                    headers=["Model ID", "Average Accuracy (%)"],
                    interactive=False,
                    datatype=["str", "number"],
                    row_count=10, # Display top 10 rows initially, but can scroll
                    col_count=2,
                    label="Full Leaderboard Data"
                )
            
            # Load leaderboard when the tab is selected or when the app loads
            demo.load(load_leaderboard, inputs=[], outputs=[leaderboard_plot_output, leaderboard_table_output])

# Launch the Gradio app
demo.launch()