Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,726 Bytes
5177cd2 e64e7b1 4e79574 e64e7b1 8ea457b fc74a31 eee15fb 3b51590 e64e7b1 eee15fb e64e7b1 eee15fb e64e7b1 eee15fb 5177cd2 4e79574 ed0b9b2 eee15fb 4e79574 eee15fb 4e79574 eee15fb 3b51590 eee15fb 3b51590 eee15fb e64e7b1 4e79574 eee15fb 4e79574 eee15fb 4e79574 e64e7b1 eee15fb e64e7b1 eee15fb 4e79574 eee15fb 05331fd 4e79574 eee15fb 3b51590 4e79574 eee15fb 4e79574 eee15fb 4e79574 eee15fb e64e7b1 aed021b eee15fb 1c17342 eee15fb e64e7b1 eee15fb 4e79574 eee15fb 4e79574 3b51590 4e79574 eee15fb 4e79574 eee15fb 4e79574 eee15fb 4e79574 0a040f1 eee15fb 4e79574 eee15fb 4e79574 eee15fb 903eadb 3b51590 eee15fb 3b51590 4e79574 3b51590 4e79574 eee15fb 3b51590 4e79574 eee15fb 4e79574 eee15fb 3b51590 eee15fb 4e79574 eee15fb 4e79574 eee15fb 4e79574 3b51590 eee15fb 4e79574 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 4e79574 eee15fb 3b51590 eee15fb 4e79574 ca30b1d 4e79574 3b51590 eee15fb 3b51590 4e79574 eee15fb 4e79574 eee15fb 4e79574 eee15fb 3b51590 4e79574 3b51590 eee15fb 4e79574 3b51590 eee15fb 4e79574 3b51590 4e79574 eee15fb 4e79574 3b51590 4e79574 eee15fb 3b51590 eee15fb 05331fd 3b51590 05331fd eee15fb 3b51590 eee15fb cda939c 3b51590 eee15fb 3b51590 eee15fb 3b51590 4e79574 3b51590 eee15fb 3b51590 eee15fb 3b51590 05331fd 4e79574 eee15fb 3b51590 ca30b1d 4e79574 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 ca30b1d eee15fb 3b51590 4e79574 3b51590 e64e7b1 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb ca30b1d eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb fc74a31 4e79574 eee15fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from datasets import load_dataset, get_dataset_config_names
import torch
import re
import json
import pandas as pd
import traceback
import spaces
from datetime import datetime
# --- Environment and Caching ---
# It's good practice to ensure the cache directory exists.
CACHE_DIR = "evaluation_cache"
os.makedirs(CACHE_DIR, exist_ok=True)
EVAL_FILE = os.path.join(CACHE_DIR, "eval.jsonl")
# Cache to avoid reloading models and dataset configs
model_cache = {}
benchmark_subject_cache = {}
# Use environment variable for the Hugging Face token
HF_TOKEN = os.environ.get("HF_TOKEN")
# --- Constants for Benchmarks ---
MMLU_DATASET = "cais/mmlu"
MMLU_PRO_DATASET = "TIGER-Lab/MMLU-Pro"
BENCHMARK_MAP = {
"MMLU": MMLU_DATASET,
"MMLU-Pro": MMLU_PRO_DATASET
}
# --- Data Loading and Preparation ---
def get_all_benchmark_options():
"""
Fetches and caches the available subjects (configs) for each benchmark dataset.
This function now populates a global cache to avoid repeated API calls.
"""
if benchmark_subject_cache:
return benchmark_subject_cache
print("Fetching benchmark configurations for the first time...")
for key, dataset_id in BENCHMARK_MAP.items():
try:
# Fetching dataset configurations requires authentication if the dataset is private
subjects = get_dataset_config_names(dataset_id, token=HF_TOKEN)
benchmark_subject_cache[key] = ["ALL"] + sorted([s for s in subjects if s != 'all']) # Sort subjects
except Exception as e:
print(f"Warning: Could not load configs for {key} ({dataset_id}). It might be private or unavailable. Error: {e}")
benchmark_subject_cache[key] = ["ALL"] # Provide a default
print("Benchmark configurations cached.")
return benchmark_subject_cache
# Initialize the cache on startup
ALL_BENCHMARK_SUBJECTS = get_all_benchmark_options()
@spaces.GPU()
def load_model(model_id):
"""
Loads a Hugging Face model and tokenizer, creating a text-generation pipeline.
Uses a cache to avoid reloading models.
"""
if not model_id:
raise ValueError("Model ID cannot be empty.")
gr.Info(f"Attempting to load model: {model_id}...")
if model_id in model_cache:
gr.Info(f"Model '{model_id}' found in cache.")
return model_cache[model_id]
try:
# Use bfloat16 for better performance on modern GPUs
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=HF_TOKEN,
torch_dtype=dtype,
trust_remote_code=True,
low_cpu_mem_usage=True, # Optimization for large models
).to("cuda" if torch.cuda.is_available() else "cpu")
# Create the pipeline for text generation
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1
)
model_cache[model_id] = generator
gr.Info(f"Model '{model_id}' loaded successfully.")
return generator
except Exception as e:
# Raise a more specific error to be caught by the main evaluation function
raise RuntimeError(f"Failed to load model '{model_id}'. Please verify the model ID and your Hugging Face token (if required). Error: {e}")
# --- Evaluation Logic ---
def format_prompt(item):
"""Formats the MMLU question and choices into a standardized prompt."""
prompt = f"Question: {item['question']}\n\nChoices:\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\n\nAnswer:"
return prompt, item['answer']
def get_choice_letter(index):
"""Converts a numerical choice index (0-3) to a letter (A-D)."""
return chr(ord('A') + index) if 0 <= index <= 3 else None
def extract_predicted_letter(output_text):
"""
Extracts the predicted letter from the model's output.
It looks for a letter (A, B, C, D) immediately following 'Answer:'.
"""
# Look for "Answer: X" and capture X
match = re.search(r"Answer:\s*([ABCD])", output_text.strip(), re.IGNORECASE)
if match:
return match.group(1).upper()
# Fallback: if the model just outputs a letter
match = re.search(r"^\s*([ABCD])\b", output_text.strip())
if match:
return match.group(1).upper()
return None
def evaluate_single_subject(generator, dataset_id, subject, sample_count, progress):
"""
Evaluates a model on a specific subject from a dataset.
"""
gr.Info(f"Loading dataset: {dataset_id} ({subject})...")
try:
# Load the 'test' split as it's standard for MMLU evaluation
dataset = load_dataset(dataset_id, subject, token=HF_TOKEN, split="test")
except Exception as e:
raise RuntimeError(f"Failed to load dataset '{dataset_id}' for subject '{subject}'. Error: {e}")
# Shuffle and select a subset of samples for evaluation
num_samples = min(sample_count, len(dataset))
dataset = dataset.shuffle(seed=42).select(range(num_samples))
correct_predictions = 0
results_details = []
for item in progress.tqdm(dataset, desc=f"Evaluating {subject}"):
prompt, correct_answer_idx = format_prompt(item)
expected_letter = get_choice_letter(correct_answer_idx)
# The generated text is often just after the prompt. We need to slice it.
full_prompt_text = generator.tokenizer.decode(generator.tokenizer.encode(prompt), skip_special_tokens=True)
# Generate a short response, aiming for a single letter answer.
# do_sample=False (greedy decoding) is crucial for reproducibility.
raw_output = generator(prompt, max_new_tokens=5, do_sample=False, pad_token_id=generator.tokenizer.eos_token_id)[0]["generated_text"]
# Isolate the newly generated part
generated_text_only = raw_output[len(full_prompt_text):].strip()
predicted_letter = extract_predicted_letter(generated_text_only)
is_correct = (predicted_letter == expected_letter)
if is_correct:
correct_predictions += 1
results_details.append({
"Question": item['question'],
"Correct": "β
" if is_correct else "β",
"Expected": expected_letter,
"Predicted": predicted_letter or "N/A",
"Model Output": generated_text_only
})
accuracy = (correct_predictions / num_samples) * 100 if num_samples > 0 else 0
return accuracy, results_details
@spaces.GPU()
def run_evaluation(model_id, benchmark_category, subject_name, sample_count, progress=gr.Progress(track_tqdm=True)):
"""
Main function to orchestrate the entire evaluation process.
Handles single subject or 'ALL' subjects evaluation.
Returns a dictionary of Gradio updates.
"""
try:
gr.Info("Starting evaluation...")
generator = load_model(model_id)
dataset_id = BENCHMARK_MAP.get(benchmark_category)
if not dataset_id:
raise ValueError(f"Invalid benchmark category: {benchmark_category}")
all_results_details = []
summary_lines = []
total_correct = 0
total_samples = 0
subjects_to_run = []
if subject_name == "ALL":
# Exclude the "ALL" placeholder from the list of subjects to run
subjects_to_run = [s for s in ALL_BENCHMARK_SUBJECTS.get(benchmark_category, []) if s != "ALL"]
else:
subjects_to_run = [subject_name]
if not subjects_to_run:
gr.Warning(f"No subjects found for '{benchmark_category}'.")
# Return an empty but valid structure
return {
result_summary_output: gr.update(value="No subjects found to evaluate.", visible=True),
error_box: gr.update(visible=False),
details_box: gr.update(visible=False),
}
for i, subject in enumerate(subjects_to_run):
gr.Info(f"Evaluating {benchmark_category} - {subject} ({i+1}/{len(subjects_to_run)})...")
try:
accuracy, subject_details = evaluate_single_subject(generator, dataset_id, subject, sample_count, progress)
all_results_details.extend(subject_details)
num_correct = sum(1 for d in subject_details if d['Correct'] == "β
")
num_evaluated = len(subject_details)
total_correct += num_correct
total_samples += num_evaluated
summary_lines.append(f"- **{subject}**: {accuracy:.2f}% ({num_correct}/{num_evaluated})")
except Exception as e:
error_trace = traceback.format_exc()
gr.Error(f"Skipping {subject} due to an error: {e}")
summary_lines.append(f"- **{subject}**: Evaluation failed. See logs for details:\n```\n{error_trace}\n```")
continue
overall_accuracy = (total_correct / total_samples) * 100 if total_samples > 0 else 0
# --- Prepare Outputs ---
if subject_name == "ALL":
result_summary = f"### Overall Average Accuracy: {overall_accuracy:.2f}%\n"
result_summary += f"across {total_samples:,} total samples from {len(subjects_to_run)} subjects.\n\n---\n\n**Breakdown by Subject:**\n"
result_summary += "\n".join(summary_lines)
else:
result_summary = f"### Accuracy for {benchmark_category} - {subject_name}: {overall_accuracy:.2f}%\n"
result_summary += f"({total_correct:,}/{total_samples:,} correct)"
# Save results for leaderboard
record = {
"model_id": model_id,
"benchmark": benchmark_category,
"accuracy": overall_accuracy,
"subject": subject_name, # Record if it was an 'ALL' run
"sample_count": total_samples,
"timestamp": datetime.now().isoformat()
}
with open(EVAL_FILE, "a") as f:
f.write(json.dumps(record) + "\n")
gr.Info("Evaluation completed successfully!")
df_details = pd.DataFrame(all_results_details)
# Return a dictionary of component updates
return {
result_summary_output: gr.update(value=result_summary, visible=True),
error_box: gr.update(visible=False),
details_box: gr.update(visible=True),
detailed_results_df: gr.update(value=df_details)
}
except Exception as e:
error_message = f"An unexpected error occurred during setup: {e}"
error_details = traceback.format_exc()
gr.Error(error_message)
return {
result_summary_output: gr.update(visible=False),
error_box: gr.update(visible=True),
error_output: gr.update(value=error_message),
error_details_output: gr.update(value=error_details),
details_box: gr.update(visible=False)
}
# --- UI Helper Functions ---
def update_subject_dropdown(benchmark_category):
"""Updates the subject dropdown choices based on the selected benchmark."""
choices = ALL_BENCHMARK_SUBJECTS.get(benchmark_category, [])
default_value = "ALL" if "ALL" in choices else (choices[0] if choices else None)
return gr.update(choices=choices, value=default_value)
def load_leaderboard(benchmark_filter, progress=gr.Progress()):
"""
Loads and processes evaluation data to display on the leaderboard.
It now correctly averages scores for models that were evaluated on 'ALL' subjects.
"""
progress(0, desc="Loading Leaderboard...")
try:
if not os.path.exists(EVAL_FILE):
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
df = pd.read_json(EVAL_FILE, lines=True)
if df.empty:
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
# Coerce accuracy to numeric and filter valid entries
df['accuracy'] = pd.to_numeric(df['accuracy'], errors='coerce')
df.dropna(subset=['accuracy'], inplace=True)
# Filter by the selected benchmark (e.g., MMLU or MMLU-Pro)
df_filtered = df[(df['benchmark'] == benchmark_filter) & (df['subject'] == 'ALL')].copy()
if df_filtered.empty:
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
# Find the latest evaluation for each model
df_filtered['timestamp'] = pd.to_datetime(df_filtered['timestamp'])
latest_evals = df_filtered.loc[df_filtered.groupby('model_id')['timestamp'].idxmax()].copy()
leaderboard_df = latest_evals.sort_values(by="accuracy", ascending=False).copy()
# Add Rank
leaderboard_df.insert(0, 'Rank', range(1, len(leaderboard_df) + 1))
# Rename and format columns
leaderboard_df.rename(columns={
'model_id': 'Model ID',
'accuracy': 'Avg. Accuracy (%)',
'sample_count': 'Total Samples',
'timestamp': 'Date'
}, inplace=True)
leaderboard_df['Avg. Accuracy (%)'] = leaderboard_df['Avg. Accuracy (%)'].map('{:.2f}'.format)
leaderboard_df['Date'] = leaderboard_df['Date'].dt.strftime('%Y-%m-%d')
progress(1, desc="Done.")
return leaderboard_df[['Rank', 'Model ID', 'Avg. Accuracy (%)', 'Total Samples', 'Date']]
except Exception as e:
gr.Error(f"Error loading leaderboard: {e}")
traceback.print_exc()
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
# --- Gradio Interface Definition ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), css="""
/* --- Global & Layout --- */
body { font-family: 'Inter', sans-serif; background-color: #f8f9fa; }
.gradio-container { max-width: 1280px !important; margin: auto; }
.gr-group { border-radius: 12px !important; box-shadow: 0 4px 12px rgba(0,0,0,0.05) !important; border: 1px solid #e9ecef !important; background-color: white; }
/* --- Typography --- */
h1 { text-align: center; font-size: 2.5rem !important; font-weight: 800; color: #212529; margin-bottom: 0.5rem; letter-spacing: -1.5px; }
.subtitle { text-align: center; color: #6c757d; font-size: 1.1rem; margin-bottom: 2.5rem; max-width: 800px; margin-left: auto; margin-right: auto;}
/* --- Buttons & Inputs --- */
.gr-button { font-weight: 600 !important; transition: all 0.2s ease; }
.gr-button-primary { box-shadow: 0 4px 10px rgba(59, 130, 246, 0.2); }
.gr-button-primary:hover { transform: translateY(-2px); box-shadow: 0 6px 15px rgba(59, 130, 246, 0.3); }
/* --- Custom Radio Buttons (Segmented Control) --- */
#leaderboard-toggle-group { display: flex; justify-content: center; align-items: center; gap: 1rem; margin-bottom: 1.5rem; }
#leaderboard-toggle { background-color: #e9ecef; padding: 5px; border-radius: 10px; display: inline-flex; }
#leaderboard-toggle div.gr-form { display: flex; gap: 5px; }
#leaderboard-toggle input[type='radio'] { display: none; }
#leaderboard-toggle label { padding: 8px 16px; border-radius: 8px; cursor: pointer; transition: all 0.3s ease; font-weight: 500; color: #495057; background: transparent; border: none; box-shadow: none; }
#leaderboard-toggle input[type='radio']:checked + label { background-color: white; color: #0d6efd; font-weight: 600; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }
/* --- Dataframe / Table Styling --- */
.leaderboard-table .gr-dataframe table { border-collapse: collapse; width: 100%; }
.leaderboard-table .gr-dataframe thead th { background-color: #f8f9fa !important; color: #495057 !important; font-weight: 600 !important; text-align: left; padding: 12px 15px; border-bottom: 2px solid #dee2e6; }
.leaderboard-table .gr-dataframe tbody tr:nth-of-type(even) { background-color: #fdfdff; }
.leaderboard-table .gr-dataframe tbody tr:hover { background-color: #f0f6ff; }
.leaderboard-table .gr-dataframe tbody td { padding: 12px 15px; border-bottom: 1px solid #e9ecef; }
.leaderboard-table .gr-dataframe tbody td:first-child { font-weight: 700; color: #495057; }
/* --- Error & Result Panes --- */
#error-display-box { background-color: #fff3f3 !important; border-color: #ffc9c9 !important; }
#result-summary-box { background-color: #f3f9ff !important; border-color: #cde4ff !important; }
""") as demo:
gr.Markdown("<h1>π Open LLM Evaluator</h1>")
gr.Markdown("<p class='subtitle'>Benchmark leading models on MMLU and MMLU-Pro. Your results contribute to a live leaderboard. Select a benchmark and run an evaluation, or view the current standings.</p>")
with gr.Tabs() as tabs:
# --- Leaderboard Tab ---
with gr.TabItem("π Leaderboard", id=0):
with gr.Column():
with gr.Row(elem_id="leaderboard-toggle-group"):
leaderboard_type_toggle = gr.Radio(
["MMLU", "MMLU-Pro"],
label="Select Benchmark",
value="MMLU",
interactive=True,
elem_id="leaderboard-toggle",
container=False,
show_label=False,
)
refresh_button = gr.Button("π Refresh", size="sm")
leaderboard_table_output = gr.DataFrame(
headers=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"],
interactive=False,
datatype=["number", "str", "str", "number", "str"],
row_count=15,
elem_classes="leaderboard-table"
)
# --- Evaluation Tab ---
with gr.TabItem("π Run Evaluation", id=1):
with gr.Row(variant='panel'):
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("### 1. Configure Evaluation")
model_id_input = gr.Textbox(
label="Hugging Face Model ID",
placeholder="e.g., meta-llama/Meta-Llama-3-8B-Instruct",
interactive=True
)
benchmark_selection_radio = gr.Radio(
["MMLU", "MMLU-Pro"],
label="Benchmark",
value="MMLU",
interactive=True,
)
with gr.Row():
benchmark_subject_dropdown = gr.Dropdown(
label="Subject",
choices=ALL_BENCHMARK_SUBJECTS.get("MMLU", []),
value="ALL",
interactive=True
)
sample_count_slider = gr.Slider(
label="Samples per Subject",
minimum=5, maximum=100, value=25, step=5, interactive=True
)
run_button = gr.Button("Start Evaluation", variant="primary", scale=1)
with gr.Column(scale=3):
gr.Markdown("### 2. View Results")
# Panel for displaying the summary of results
with gr.Group(visible=False) as result_summary_box:
result_summary_output = gr.Markdown(elem_id="result-summary-box")
# Panel for displaying errors
with gr.Group(visible=False) as error_box:
error_output = gr.Textbox(label="Error Message", interactive=False, elem_id="error-display-box")
error_details_output = gr.Textbox(label="Error Details (Traceback)", interactive=False, lines=8)
# Panel for detailed, row-by-row results
with gr.Group(visible=False) as details_box:
gr.Markdown("#### Detailed Evaluation Log")
detailed_results_df = gr.DataFrame(
headers=["Question", "Correct", "Expected", "Predicted", "Model Output"],
datatype=["str", "str", "str", "str", "str"],
interactive=False,
row_count=10,
col_count=5,
wrap=True,
)
# --- Event Handlers & Logic ---
# Update subject dropdown when benchmark type changes
benchmark_selection_radio.change(
fn=update_subject_dropdown,
inputs=[benchmark_selection_radio],
outputs=[benchmark_subject_dropdown]
)
# Main evaluation trigger
run_button.click(
fn=run_evaluation,
inputs=[model_id_input, benchmark_selection_radio, benchmark_subject_dropdown, sample_count_slider],
outputs=[result_summary_output, error_box, error_output, error_details_output, details_box, detailed_results_df]
).then(
# After evaluation, switch to the leaderboard tab and refresh it
lambda: gr.update(selected=0), outputs=[tabs]
).then(
load_leaderboard, inputs=[leaderboard_type_toggle], outputs=[leaderboard_table_output]
)
# Leaderboard loading logic
demo.load(
fn=load_leaderboard,
inputs=[leaderboard_type_toggle],
outputs=[leaderboard_table_output]
)
leaderboard_type_toggle.change(
fn=load_leaderboard,
inputs=[leaderboard_type_toggle],
outputs=[leaderboard_table_output],
show_progress='minimal'
)
refresh_button.click(
fn=load_leaderboard,
inputs=[leaderboard_type_toggle],
outputs=[leaderboard_table_output],
show_progress='full'
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch(debug=True)
|