Spaces:
Running
Running
File size: 26,198 Bytes
cb8606e 27e6518 89fe5e3 27e6518 cb8606e 89fe5e3 27e6518 89fe5e3 27e6518 89fe5e3 27e6518 89fe5e3 cb8606e 89fe5e3 cb8606e 89fe5e3 cb8606e 89fe5e3 cb8606e 89fe5e3 cb8606e 89fe5e3 cb8606e 89fe5e3 cb8606e 89fe5e3 cb8606e 6a92f7e cb8606e 27e6518 cb8606e 89fe5e3 cb8606e 6a92f7e cb8606e 27e6518 cb8606e 27e6518 cb8606e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
import os
import spaces
# only debug for hf now
REPO_TYPE = "hf"
if REPO_TYPE not in ["hf", "ms"]:
raise ValueError("REPO_TYPE must be either 'hf' for Hugging Face or 'ms' for ModelScope.")
if REPO_TYPE == "hf":
from huggingface_hub import snapshot_download
else:
from modelscope.hub.snapshot_download import snapshot_download
# 1. 定义本地路径和远程仓库ID
MODEL_CACHE_DIR = "./models"
FUN_ASR_NANO_LOCAL_PATH = os.path.join(MODEL_CACHE_DIR, "Fun-ASR-Nano")
SENSE_VOICE_SMALL_LOCAL_PATH = os.path.join(MODEL_CACHE_DIR, "SenseVoiceSmall")
VAD_MODEL_LOCAL_PATH = os.path.join(MODEL_CACHE_DIR, "fsmn-vad")
# 创建模型缓存目录
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
# 设置ModelScope环境变量以使用本地缓存
os.environ['MODELSCOPE_CACHE'] = MODEL_CACHE_DIR
# 禁用远程下载,强制使用本地模型(可选,如果想要确保只使用本地模型)
# os.environ['MODELSCOPE_DISABLE_REMOTE'] = '1'
print(f"ModelScope缓存目录设置为: {MODEL_CACHE_DIR}")
if REPO_TYPE == "ms":
FUN_ASR_NANO_REPO_ID = "FunAudioLLM/Fun-ASR-Nano-2512"
SENSE_VOICE_SMALL_REPO_ID = "iic/SenseVoiceSmall"
VAD_MODEL_REPO_ID = "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch"
else:
FUN_ASR_NANO_REPO_ID = "FunAudioLLM/Fun-ASR-Nano-2512"
SENSE_VOICE_SMALL_REPO_ID = "FunAudioLLM/SenseVoiceSmall"
VAD_MODEL_REPO_ID = "funasr/fsmn-vad"
# 2. 检查本地是否存在,不存在则下载
def download_model_if_not_exists(repo_id, local_path, model_name):
"""如果本地模型不存在,则下载模型"""
if not os.path.exists(local_path):
print(f"正在下载模型 {model_name} 到 {local_path} ...")
snapshot_download(
repo_id=repo_id,
local_dir=local_path,
ignore_patterns=["*.onnx"], # 如果你不需要onnx文件,可以过滤掉以节省时间和空间
)
print(f"{model_name} 模型下载完毕!")
else:
print(f"检测到本地 {model_name} 模型文件,跳过下载。")
# 下载所有需要的模型
download_model_if_not_exists(FUN_ASR_NANO_REPO_ID, FUN_ASR_NANO_LOCAL_PATH, "Fun-ASR-Nano")
download_model_if_not_exists(SENSE_VOICE_SMALL_REPO_ID, SENSE_VOICE_SMALL_LOCAL_PATH, "SenseVoiceSmall")
download_model_if_not_exists(VAD_MODEL_REPO_ID, VAD_MODEL_LOCAL_PATH, "VAD Model")
import gradio as gr
import time
import sys
import io
import tempfile
import subprocess
import requests
from urllib.parse import urlparse
from pydub import AudioSegment
import logging
import torch
import importlib
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
# Model configurations for local deployment
FUN_ASR_NANO_MODEL_PATH_LIST = [
FUN_ASR_NANO_LOCAL_PATH, # local path
]
SENSEVOICE_MODEL_PATH_LIST = [
SENSE_VOICE_SMALL_LOCAL_PATH, # local path
]
class LogCapture(io.StringIO):
def __init__(self, callback):
super().__init__()
self.callback = callback
def write(self, s):
super().write(s)
self.callback(s)
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Check for CUDA availability
device = "cuda:0" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {device}")
def download_audio(url, method_choice, proxy_url, proxy_username, proxy_password):
"""
Downloads audio from a given URL using the specified method and proxy settings.
Args:
url (str): The URL of the audio.
method_choice (str): The method to use for downloading audio.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
tuple: (path to the downloaded audio file, is_temp_file), or (None, False) if failed.
"""
parsed_url = urlparse(url)
logging.info(f"Downloading audio from URL: {url} using method: {method_choice}")
try:
if 'youtube.com' in parsed_url.netloc or 'youtu.be' in parsed_url.netloc:
error_msg = f"YouTube download is not supported. Please use direct audio URLs instead."
logging.error(error_msg)
return None, False
elif parsed_url.scheme == 'rtsp':
audio_file = download_rtsp_audio(url, proxy_url)
if not audio_file:
error_msg = f"Failed to download RTSP audio from {url}"
logging.error(error_msg)
return None, False
else:
audio_file = download_direct_audio(url, method_choice, proxy_url, proxy_username, proxy_password)
if not audio_file:
error_msg = f"Failed to download audio from {url} using method {method_choice}"
logging.error(error_msg)
return None, False
return audio_file, True
except Exception as e:
error_msg = f"Error downloading audio from {url} using method {method_choice}: {str(e)}"
logging.error(error_msg)
return None, False
def download_rtsp_audio(url, proxy_url):
"""
Downloads audio from an RTSP URL using FFmpeg.
Args:
url (str): The RTSP URL.
proxy_url (str): Proxy URL if needed.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using FFmpeg to download RTSP stream")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['ffmpeg', '-i', url, '-acodec', 'libmp3lame', '-ab', '192k', '-y', output_file]
env = os.environ.copy()
if proxy_url and len(proxy_url.strip()) > 0:
env['http_proxy'] = proxy_url
env['https_proxy'] = proxy_url
try:
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env)
logging.info(f"Downloaded RTSP audio to: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg error: {e.stderr.decode()}")
return None
except Exception as e:
logging.error(f"Error downloading RTSP audio: {str(e)}")
return None
def download_direct_audio(url, method_choice, proxy_url, proxy_username, proxy_password):
"""
Downloads audio from a direct URL using the specified method.
Args:
url (str): The direct URL of the audio file.
method_choice (str): The method to use for downloading.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info(f"Downloading direct audio from: {url} using method: {method_choice}")
methods = {
'wget': wget_method,
'requests': requests_method,
'ffmpeg': ffmpeg_method,
'aria2': aria2_method,
}
method = methods.get(method_choice, requests_method)
try:
audio_file = method(url, proxy_url, proxy_username, proxy_password)
if not audio_file or not os.path.exists(audio_file):
error_msg = f"Failed to download direct audio from {url} using method {method_choice}"
logging.error(error_msg)
return None
return audio_file
except Exception as e:
logging.error(f"Error downloading direct audio with {method_choice}: {str(e)}")
return None
def requests_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio using the requests library.
Args:
url (str): The URL of the audio file.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
try:
proxies = None
auth = None
if proxy_url and len(proxy_url.strip()) > 0:
proxies = {
"http": proxy_url,
"https": proxy_url
}
if proxy_username and proxy_password:
auth = (proxy_username, proxy_password)
response = requests.get(url, stream=True, proxies=proxies, auth=auth)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
temp_file.write(chunk)
logging.info(f"Downloaded direct audio to: {temp_file.name}")
return temp_file.name
else:
logging.error(f"Failed to download audio from {url} with status code {response.status_code}")
return None
except Exception as e:
logging.error(f"Error in requests_method: {str(e)}")
return None
def wget_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio using the wget command-line tool.
Args:
url (str): The URL of the audio file.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using wget method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['wget', '-O', output_file, url]
env = os.environ.copy()
if proxy_url and len(proxy_url.strip()) > 0:
env['http_proxy'] = proxy_url
env['https_proxy'] = proxy_url
try:
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env)
logging.info(f"Downloaded audio to: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logging.error(f"Wget error: {e.stderr.decode()}")
return None
except Exception as e:
logging.error(f"Error in wget_method: {str(e)}")
return None
def ffmpeg_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio using FFmpeg.
Args:
url (str): The URL of the audio file.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using ffmpeg method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file]
env = os.environ.copy()
if proxy_url and len(proxy_url.strip()) > 0:
env['http_proxy'] = proxy_url
env['https_proxy'] = proxy_url
try:
subprocess.run(command, check=True, capture_output=True, text=True, env=env)
logging.info(f"Downloaded and converted audio to: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg error: {e.stderr}")
return None
except Exception as e:
logging.error(f"Error in ffmpeg_method: {str(e)}")
return None
def aria2_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio using aria2.
Args:
url (str): The URL of the audio file.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using aria2 method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
if proxy_url and len(proxy_url.strip()) > 0:
command.extend(['--all-proxy', proxy_url])
try:
subprocess.run(command, check=True, capture_output=True, text=True)
logging.info(f"Downloaded audio to: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logging.error(f"Aria2 error: {e.stderr}")
return None
except Exception as e:
logging.error(f"Error in aria2_method: {str(e)}")
return None
def trim_audio(audio_path, start_time, end_time):
"""
Trims an audio file to the specified start and end times.
Args:
audio_path (str): Path to the audio file.
start_time (float): Start time in seconds.
end_time (float): End time in seconds.
Returns:
str: Path to the trimmed audio file.
Raises:
gr.Error: If invalid start or end times are provided.
"""
try:
logging.info(f"Trimming audio from {start_time} to {end_time}")
audio = AudioSegment.from_file(audio_path)
audio_duration = len(audio) / 1000 # Duration in seconds
# Default start and end times if None
start_time = max(0, start_time) if start_time is not None else 0
end_time = min(audio_duration, end_time) if end_time is not None else audio_duration
# Validate times
if start_time >= end_time:
raise gr.Error("End time must be greater than start time.")
trimmed_audio = audio[int(start_time * 1000):int(end_time * 1000)]
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio_file:
trimmed_audio.export(temp_audio_file.name, format="wav")
logging.info(f"Trimmed audio saved to: {temp_audio_file.name}")
return temp_audio_file.name
except Exception as e:
logging.error(f"Error trimming audio: {str(e)}")
raise gr.Error(f"Error trimming audio: {str(e)}")
def save_transcription(transcription):
"""
Saves the transcription text to a temporary file.
Args:
transcription (str): The transcription text.
Returns:
str: The path to the transcription file.
"""
with tempfile.NamedTemporaryFile(delete=False, suffix='.txt', mode='w', encoding='utf-8') as temp_file:
temp_file.write(transcription)
logging.info(f"Transcription saved to: {temp_file.name}")
return temp_file.name
def get_model_options(pipeline_type):
"""
Returns a list of model IDs based on the selected pipeline type.
Args:
pipeline_type (str): The type of pipeline.
Returns:
list: A list of model IDs.
"""
if pipeline_type == "fun-asr-nano":
return FUN_ASR_NANO_MODEL_PATH_LIST
elif pipeline_type == "sensevoice":
return SENSEVOICE_MODEL_PATH_LIST
else:
return []
# if pipeline_type == "sensevoice":
# return SENSEVOICE_MODEL_PATH_LIST
# else:
# return []
# Dictionary to store loaded models
loaded_models = {}
@spaces.GPU(duration=40)
def transcribe_audio(audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, download_method, start_time=None, end_time=None, verbose=False):
"""
Transcribes audio from a given source using SenseVoice.
Args:
audio_input (str): Path to uploaded audio file or recorded audio.
audio_url (str): URL of audio.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
pipeline_type (str): Type of pipeline to use ('sensevoice').
model_id (str): The ID of the model to use.
download_method (str): Method to use for downloading audio.
start_time (float, optional): Start time in seconds for trimming audio.
end_time (float, optional): End time in seconds for trimming audio.
verbose (bool, optional): Whether to output verbose logging.
Yields:
Tuple[str, str, str or None]: Metrics and messages, transcription text, path to transcription file.
"""
try:
if verbose:
logging.getLogger().setLevel(logging.INFO)
else:
logging.getLogger().setLevel(logging.WARNING)
logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, download_method={download_method}")
verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nDownload Method: {download_method}\n"
if verbose:
yield verbose_messages, "", None
# Determine the audio source
audio_path = None
is_temp_file = False
if audio_input is not None and len(audio_input) > 0:
# audio_input is a filepath to uploaded or recorded audio
audio_path = audio_input
is_temp_file = False
elif audio_url is not None and len(audio_url.strip()) > 0:
# audio_url is provided
audio_path, is_temp_file = download_audio(audio_url, download_method, proxy_url, proxy_username, proxy_password)
if not audio_path:
error_msg = f"Error downloading audio from {audio_url} using method {download_method}. Check logs for details."
logging.error(error_msg)
yield verbose_messages + error_msg, "", None
return
else:
verbose_messages += f"Successfully downloaded audio from {audio_url}\n"
if verbose:
yield verbose_messages, "", None
else:
error_msg = "No audio source provided. Please upload an audio file, record audio, or enter a URL."
logging.error(error_msg)
yield verbose_messages + error_msg, "", None
return
# Convert start_time and end_time to float or None
start_time = float(start_time) if start_time else None
end_time = float(end_time) if end_time else None
if start_time is not None or end_time is not None:
audio_path = trim_audio(audio_path, start_time, end_time)
is_temp_file = True # The trimmed audio is a temporary file
verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
if verbose:
yield verbose_messages, "", None
# Model caching
model_key = (pipeline_type, model_id)
if model_key in loaded_models:
model = loaded_models[model_key]
logging.info("Loaded model from cache")
else:
if pipeline_type == "fun-asr-nano":
model = AutoModel(
model=model_id,
trust_remote_code=True,
remote_code=f"./Fun-ASR/model.py",
vad_model=VAD_MODEL_LOCAL_PATH, # Use local VAD model path
vad_kwargs={"max_single_segment_time": 30000},
device=device,
disable_update=True,
hub='ms',
)
elif pipeline_type == "sensevoice":
model = AutoModel(
model=model_id,
trust_remote_code=False,
vad_model=VAD_MODEL_LOCAL_PATH, # Use local VAD model path
vad_kwargs={"max_single_segment_time": 30000},
device=device,
disable_update=True,
hub='ms',
)
else:
error_msg = "Invalid pipeline type. Only 'sensevoice' is supported."
logging.error(error_msg)
yield verbose_messages + error_msg, "", None
return
loaded_models[model_key] = model
# Perform the transcription
start_time_perf = time.time()
if pipeline_type == "fun-asr-nano":
system_prompt = "You are a helpful assistant."
user_prompt = f"语音转写:<|startofspeech|>!{audio_path}<|endofspeech|>"
contents_i = []
contents_i.append({"role": "system", "content": system_prompt})
contents_i.append({"role": "user", "content": user_prompt})
contents_i.append({"role": "assistant", "content": "null"})
print(audio_path)
res = model.generate(
input=[audio_path],
use_itn=True,
batch_size=1,
)
elif pipeline_type == "sensevoice":
res = model.generate(
input=audio_path,
cache={},
language="auto", # "zh", "en", "yue", "ja", "ko", "nospeech"
use_itn=True,
batch_size_s=60,
merge_vad=True,
merge_length_s=15,
)
transcription = rich_transcription_postprocess(res[0]["text"])
end_time_perf = time.time()
# Calculate metrics
transcription_time = end_time_perf - start_time_perf
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
metrics_output = (
f"Transcription time: {transcription_time:.2f} seconds\n"
f"Audio file size: {audio_file_size:.2f} MB\n"
)
# Save the transcription to a file
transcription_file = save_transcription(transcription)
# Always yield the final result, regardless of verbose setting
final_metrics = verbose_messages + metrics_output
yield final_metrics, transcription, transcription_file
except Exception as e:
error_msg = f"An error occurred during transcription: {str(e)}"
logging.error(error_msg)
yield verbose_messages + error_msg, "", None
finally:
# Clean up temporary audio files
if audio_path and is_temp_file and os.path.exists(audio_path):
os.remove(audio_path)
with gr.Blocks() as iface:
gr.Markdown("# Audio Transcription")
gr.Markdown("Transcribe audio using SenseVoice model with multilingual support.")
with gr.Row():
audio_input = gr.Audio(label="Upload or Record Audio", sources=["upload", "microphone"], type="filepath")
audio_url = gr.Textbox(label="Or Enter URL of audio file (direct link only, no YouTube)")
transcribe_button = gr.Button("Transcribe")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
proxy_url = gr.Textbox(label="Proxy URL", placeholder="Enter proxy URL if needed", value="", lines=1)
proxy_username = gr.Textbox(label="Proxy Username", placeholder="Proxy username (optional)", value="", lines=1)
proxy_password = gr.Textbox(label="Proxy Password", placeholder="Proxy password (optional)", value="", lines=1, type="password")
with gr.Row():
pipeline_type = gr.Dropdown(
choices=["sensevoice","fun-asr-nano"],
label="Pipeline Type",
value="fun-asr-nano"
)
model_id = gr.Dropdown(
label="Model",
choices=get_model_options("fun-asr-nano"),
value=FUN_ASR_NANO_MODEL_PATH_LIST[0] # Default to official Local Model
)
with gr.Row():
download_method = gr.Dropdown(
choices=["requests", "ffmpeg", "aria2", "wget"],
label="Download Method",
value="requests"
)
with gr.Row():
start_time = gr.Number(label="Start Time (seconds)", value=None, minimum=0)
end_time = gr.Number(label="End Time (seconds)", value=None, minimum=0)
verbose = gr.Checkbox(label="Verbose Output", value=False)
with gr.Row():
metrics_output = gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10)
transcription_output = gr.Textbox(label="Transcription", lines=10)
transcription_file = gr.File(label="Download Transcription")
def update_model_dropdown(pipeline_type):
"""
Updates the model dropdown choices based on the selected pipeline type.
Args:
pipeline_type (str): The selected pipeline type.
Returns:
gr.update: Updated model dropdown component.
"""
try:
model_choices = get_model_options(pipeline_type)
logging.info(f"Model choices for {pipeline_type}: {model_choices}")
if model_choices:
return gr.update(choices=model_choices, value=model_choices[0], visible=True)
else:
return gr.update(choices=["No models available"], value=None, visible=False)
except Exception as e:
logging.error(f"Error in update_model_dropdown: {str(e)}")
return gr.update(choices=["Error"], value="Error", visible=True)
# Event handler for pipeline_type change
pipeline_type.change(update_model_dropdown, inputs=[pipeline_type], outputs=[model_id])
def transcribe_with_progress(*args):
# The audio_input is now the first argument
for result in transcribe_audio(*args):
yield result
transcribe_button.click(
transcribe_with_progress,
inputs=[audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, download_method, start_time, end_time, verbose],
outputs=[metrics_output, transcription_output, transcription_file]
)
# Note: For examples, users should use local audio files or upload their own files
# Examples with specific paths may not work for all users
gr.Markdown(f"""
### Usage Examples:
1. **Upload Audio**: Click the "Upload or Record Audio" button to select your audio file
2. **Select Pipeline Type**: Choose from available pipelines:
- **Fun-ASR-Nano** (default) - Large language model based ASR model
- **SenseVoice** - CTC-based based ASR model with VAD
3. **Local Testing**: For development, you can use local paths as shown above
Supported languages:
- Fun-ASR-Nano: more than 50 languages and Chinese dialects.
- SenseVoiceSmall:Chinese (zh), English (en), Cantonese (yue), Japanese (ja), Korean (ko).
""")
iface.queue().launch(share=False, debug=True) |