File size: 26,198 Bytes
cb8606e
27e6518
89fe5e3
27e6518
 
 
 
 
 
 
 
 
cb8606e
 
 
89fe5e3
 
 
 
 
 
 
27e6518
89fe5e3
 
 
 
 
 
27e6518
 
 
 
89fe5e3
27e6518
 
 
89fe5e3
cb8606e
 
89fe5e3
 
 
 
 
 
 
 
 
 
 
 
cb8606e
89fe5e3
 
 
 
cb8606e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89fe5e3
cb8606e
89fe5e3
cb8606e
 
 
89fe5e3
cb8606e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89fe5e3
cb8606e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89fe5e3
cb8606e
6a92f7e
cb8606e
27e6518
cb8606e
 
 
 
 
89fe5e3
cb8606e
6a92f7e
cb8606e
27e6518
cb8606e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27e6518
cb8606e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import os
import spaces
# only debug for hf now
REPO_TYPE = "hf" 
if REPO_TYPE not in ["hf", "ms"]:
    raise ValueError("REPO_TYPE must be either 'hf' for Hugging Face or 'ms' for ModelScope.")

if REPO_TYPE == "hf":
    from huggingface_hub import snapshot_download
else:
    from modelscope.hub.snapshot_download import snapshot_download



# 1. 定义本地路径和远程仓库ID
MODEL_CACHE_DIR = "./models"
FUN_ASR_NANO_LOCAL_PATH = os.path.join(MODEL_CACHE_DIR, "Fun-ASR-Nano")
SENSE_VOICE_SMALL_LOCAL_PATH = os.path.join(MODEL_CACHE_DIR, "SenseVoiceSmall")
VAD_MODEL_LOCAL_PATH = os.path.join(MODEL_CACHE_DIR, "fsmn-vad")

# 创建模型缓存目录
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)

# 设置ModelScope环境变量以使用本地缓存
os.environ['MODELSCOPE_CACHE'] = MODEL_CACHE_DIR
# 禁用远程下载,强制使用本地模型(可选,如果想要确保只使用本地模型)
# os.environ['MODELSCOPE_DISABLE_REMOTE'] = '1'

print(f"ModelScope缓存目录设置为: {MODEL_CACHE_DIR}")

if REPO_TYPE == "ms":
    FUN_ASR_NANO_REPO_ID = "FunAudioLLM/Fun-ASR-Nano-2512"
    SENSE_VOICE_SMALL_REPO_ID = "iic/SenseVoiceSmall"
    VAD_MODEL_REPO_ID = "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch"
else:
    FUN_ASR_NANO_REPO_ID = "FunAudioLLM/Fun-ASR-Nano-2512"
    SENSE_VOICE_SMALL_REPO_ID = "FunAudioLLM/SenseVoiceSmall"
    VAD_MODEL_REPO_ID = "funasr/fsmn-vad"

# 2. 检查本地是否存在,不存在则下载
def download_model_if_not_exists(repo_id, local_path, model_name):
    """如果本地模型不存在,则下载模型"""
    if not os.path.exists(local_path):
        print(f"正在下载模型 {model_name}{local_path} ...")
        snapshot_download(
            repo_id=repo_id,
            local_dir=local_path,
            ignore_patterns=["*.onnx"], # 如果你不需要onnx文件,可以过滤掉以节省时间和空间
        )
        print(f"{model_name} 模型下载完毕!")
    else:
        print(f"检测到本地 {model_name} 模型文件,跳过下载。")

# 下载所有需要的模型
download_model_if_not_exists(FUN_ASR_NANO_REPO_ID, FUN_ASR_NANO_LOCAL_PATH, "Fun-ASR-Nano")
download_model_if_not_exists(SENSE_VOICE_SMALL_REPO_ID, SENSE_VOICE_SMALL_LOCAL_PATH, "SenseVoiceSmall")
download_model_if_not_exists(VAD_MODEL_REPO_ID, VAD_MODEL_LOCAL_PATH, "VAD Model")




import gradio as gr
import time
import sys
import io
import tempfile
import subprocess
import requests
from urllib.parse import urlparse
from pydub import AudioSegment
import logging
import torch
import importlib
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess

# Model configurations for local deployment
FUN_ASR_NANO_MODEL_PATH_LIST = [
    FUN_ASR_NANO_LOCAL_PATH, # local path
]

SENSEVOICE_MODEL_PATH_LIST = [
    SENSE_VOICE_SMALL_LOCAL_PATH, # local path
]

class LogCapture(io.StringIO):
    def __init__(self, callback):
        super().__init__()
        self.callback = callback

    def write(self, s):
        super().write(s)
        self.callback(s)

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')






# Check for CUDA availability
device = "cuda:0" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {device}")

def download_audio(url, method_choice, proxy_url, proxy_username, proxy_password):
    """
    Downloads audio from a given URL using the specified method and proxy settings.

    Args:
        url (str): The URL of the audio.
        method_choice (str): The method to use for downloading audio.
        proxy_url (str): Proxy URL if needed.
        proxy_username (str): Proxy username.
        proxy_password (str): Proxy password.

    Returns:
        tuple: (path to the downloaded audio file, is_temp_file), or (None, False) if failed.
    """
    parsed_url = urlparse(url)
    logging.info(f"Downloading audio from URL: {url} using method: {method_choice}")
    try:
        if 'youtube.com' in parsed_url.netloc or 'youtu.be' in parsed_url.netloc:
            error_msg = f"YouTube download is not supported. Please use direct audio URLs instead."
            logging.error(error_msg)
            return None, False
        elif parsed_url.scheme == 'rtsp':
            audio_file = download_rtsp_audio(url, proxy_url)
            if not audio_file:
                error_msg = f"Failed to download RTSP audio from {url}"
                logging.error(error_msg)
                return None, False
        else:
            audio_file = download_direct_audio(url, method_choice, proxy_url, proxy_username, proxy_password)
            if not audio_file:
                error_msg = f"Failed to download audio from {url} using method {method_choice}"
                logging.error(error_msg)
                return None, False
        return audio_file, True
    except Exception as e:
        error_msg = f"Error downloading audio from {url} using method {method_choice}: {str(e)}"
        logging.error(error_msg)
        return None, False
        

        

def download_rtsp_audio(url, proxy_url):
    """
    Downloads audio from an RTSP URL using FFmpeg.
    
    Args:
        url (str): The RTSP URL.
        proxy_url (str): Proxy URL if needed.
    
    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info("Using FFmpeg to download RTSP stream")
    output_file = tempfile.mktemp(suffix='.mp3')
    command = ['ffmpeg', '-i', url, '-acodec', 'libmp3lame', '-ab', '192k', '-y', output_file]
    env = os.environ.copy()
    if proxy_url and len(proxy_url.strip()) > 0:
        env['http_proxy'] = proxy_url
        env['https_proxy'] = proxy_url
    try:
        subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env)
        logging.info(f"Downloaded RTSP audio to: {output_file}")
        return output_file
    except subprocess.CalledProcessError as e:
        logging.error(f"FFmpeg error: {e.stderr.decode()}")
        return None
    except Exception as e:
        logging.error(f"Error downloading RTSP audio: {str(e)}")
        return None

def download_direct_audio(url, method_choice, proxy_url, proxy_username, proxy_password):
    """
    Downloads audio from a direct URL using the specified method.

    Args:
        url (str): The direct URL of the audio file.
        method_choice (str): The method to use for downloading.
        proxy_url (str): Proxy URL if needed.
        proxy_username (str): Proxy username.
        proxy_password (str): Proxy password.

    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info(f"Downloading direct audio from: {url} using method: {method_choice}")
    methods = {
        'wget': wget_method,
        'requests': requests_method,
        'ffmpeg': ffmpeg_method,
        'aria2': aria2_method,
    }
    method = methods.get(method_choice, requests_method)
    try:
        audio_file = method(url, proxy_url, proxy_username, proxy_password)
        if not audio_file or not os.path.exists(audio_file):
            error_msg = f"Failed to download direct audio from {url} using method {method_choice}"
            logging.error(error_msg)
            return None
        return audio_file
    except Exception as e:
        logging.error(f"Error downloading direct audio with {method_choice}: {str(e)}")
        return None

def requests_method(url, proxy_url, proxy_username, proxy_password):
    """
    Downloads audio using the requests library.
    
    Args:
        url (str): The URL of the audio file.
        proxy_url (str): Proxy URL if needed.
        proxy_username (str): Proxy username.
        proxy_password (str): Proxy password.
    
    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    try:
        proxies = None
        auth = None
        if proxy_url and len(proxy_url.strip()) > 0:
            proxies = {
                "http": proxy_url,
                "https": proxy_url
            }
            if proxy_username and proxy_password:
                auth = (proxy_username, proxy_password)
        response = requests.get(url, stream=True, proxies=proxies, auth=auth)
        if response.status_code == 200:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:
                        temp_file.write(chunk)
            logging.info(f"Downloaded direct audio to: {temp_file.name}")
            return temp_file.name
        else:
            logging.error(f"Failed to download audio from {url} with status code {response.status_code}")
            return None
    except Exception as e:
        logging.error(f"Error in requests_method: {str(e)}")
        return None

def wget_method(url, proxy_url, proxy_username, proxy_password):
    """
    Downloads audio using the wget command-line tool.
    
    Args:
        url (str): The URL of the audio file.
        proxy_url (str): Proxy URL if needed.
        proxy_username (str): Proxy username.
        proxy_password (str): Proxy password.
    
    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info("Using wget method")
    output_file = tempfile.mktemp(suffix='.mp3')
    command = ['wget', '-O', output_file, url]
    env = os.environ.copy()
    if proxy_url and len(proxy_url.strip()) > 0:
        env['http_proxy'] = proxy_url
        env['https_proxy'] = proxy_url
    try:
        subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env)
        logging.info(f"Downloaded audio to: {output_file}")
        return output_file
    except subprocess.CalledProcessError as e:
        logging.error(f"Wget error: {e.stderr.decode()}")
        return None
    except Exception as e:
        logging.error(f"Error in wget_method: {str(e)}")
        return None


def ffmpeg_method(url, proxy_url, proxy_username, proxy_password):
    """
    Downloads audio using FFmpeg.
    
    Args:
        url (str): The URL of the audio file.
        proxy_url (str): Proxy URL if needed.
        proxy_username (str): Proxy username.
        proxy_password (str): Proxy password.
    
    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info("Using ffmpeg method")
    output_file = tempfile.mktemp(suffix='.mp3')
    command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file]
    env = os.environ.copy()
    if proxy_url and len(proxy_url.strip()) > 0:
        env['http_proxy'] = proxy_url
        env['https_proxy'] = proxy_url
    try:
        subprocess.run(command, check=True, capture_output=True, text=True, env=env)
        logging.info(f"Downloaded and converted audio to: {output_file}")
        return output_file
    except subprocess.CalledProcessError as e:
        logging.error(f"FFmpeg error: {e.stderr}")
        return None
    except Exception as e:
        logging.error(f"Error in ffmpeg_method: {str(e)}")
        return None

def aria2_method(url, proxy_url, proxy_username, proxy_password):
    """
    Downloads audio using aria2.
    
    Args:
        url (str): The URL of the audio file.
        proxy_url (str): Proxy URL if needed.
        proxy_username (str): Proxy username.
        proxy_password (str): Proxy password.
    
    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info("Using aria2 method")
    output_file = tempfile.mktemp(suffix='.mp3')
    command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
    if proxy_url and len(proxy_url.strip()) > 0:
        command.extend(['--all-proxy', proxy_url])
    try:
        subprocess.run(command, check=True, capture_output=True, text=True)
        logging.info(f"Downloaded audio to: {output_file}")
        return output_file
    except subprocess.CalledProcessError as e:
        logging.error(f"Aria2 error: {e.stderr}")
        return None
    except Exception as e:
        logging.error(f"Error in aria2_method: {str(e)}")
        return None

def trim_audio(audio_path, start_time, end_time):
    """
    Trims an audio file to the specified start and end times.
    
    Args:
        audio_path (str): Path to the audio file.
        start_time (float): Start time in seconds.
        end_time (float): End time in seconds.
    
    Returns:
        str: Path to the trimmed audio file.
    
        Raises:
            gr.Error: If invalid start or end times are provided.
    """
    try:
        logging.info(f"Trimming audio from {start_time} to {end_time}")
        audio = AudioSegment.from_file(audio_path)
        audio_duration = len(audio) / 1000  # Duration in seconds

        # Default start and end times if None
        start_time = max(0, start_time) if start_time is not None else 0
        end_time = min(audio_duration, end_time) if end_time is not None else audio_duration

        # Validate times
        if start_time >= end_time:
            raise gr.Error("End time must be greater than start time.")

        trimmed_audio = audio[int(start_time * 1000):int(end_time * 1000)]
        with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio_file:
            trimmed_audio.export(temp_audio_file.name, format="wav")
            logging.info(f"Trimmed audio saved to: {temp_audio_file.name}")
        return temp_audio_file.name
    except Exception as e:
        logging.error(f"Error trimming audio: {str(e)}")
        raise gr.Error(f"Error trimming audio: {str(e)}")

def save_transcription(transcription):
    """
    Saves the transcription text to a temporary file.
    
    Args:
        transcription (str): The transcription text.
    
    Returns:
        str: The path to the transcription file.
    """
    with tempfile.NamedTemporaryFile(delete=False, suffix='.txt', mode='w', encoding='utf-8') as temp_file:
        temp_file.write(transcription)
        logging.info(f"Transcription saved to: {temp_file.name}")
        return temp_file.name

def get_model_options(pipeline_type):
    """
    Returns a list of model IDs based on the selected pipeline type.

    Args:
        pipeline_type (str): The type of pipeline.

    Returns:
        list: A list of model IDs.
    """
    if pipeline_type == "fun-asr-nano":
        return FUN_ASR_NANO_MODEL_PATH_LIST
    elif pipeline_type == "sensevoice":
        return SENSEVOICE_MODEL_PATH_LIST
    else:
        return []
    # if pipeline_type == "sensevoice":
    #     return SENSEVOICE_MODEL_PATH_LIST
    # else:
    #     return []

# Dictionary to store loaded models
loaded_models = {}

@spaces.GPU(duration=40)
def transcribe_audio(audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, download_method, start_time=None, end_time=None, verbose=False):
    """
    Transcribes audio from a given source using SenseVoice.

    Args:
        audio_input (str): Path to uploaded audio file or recorded audio.
        audio_url (str): URL of audio.
        proxy_url (str): Proxy URL if needed.
        proxy_username (str): Proxy username.
        proxy_password (str): Proxy password.
        pipeline_type (str): Type of pipeline to use ('sensevoice').
        model_id (str): The ID of the model to use.
        download_method (str): Method to use for downloading audio.
        start_time (float, optional): Start time in seconds for trimming audio.
        end_time (float, optional): End time in seconds for trimming audio.
        verbose (bool, optional): Whether to output verbose logging.

    Yields:
        Tuple[str, str, str or None]: Metrics and messages, transcription text, path to transcription file.
    """
    try:
        if verbose:
            logging.getLogger().setLevel(logging.INFO)
        else:
            logging.getLogger().setLevel(logging.WARNING)

        logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, download_method={download_method}")
        verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nDownload Method: {download_method}\n"

        if verbose:
            yield verbose_messages, "", None

        # Determine the audio source
        audio_path = None
        is_temp_file = False

        if audio_input is not None and len(audio_input) > 0:
            # audio_input is a filepath to uploaded or recorded audio
            audio_path = audio_input
            is_temp_file = False
        elif audio_url is not None and len(audio_url.strip()) > 0:
            # audio_url is provided
            audio_path, is_temp_file = download_audio(audio_url, download_method, proxy_url, proxy_username, proxy_password)
            if not audio_path:
                error_msg = f"Error downloading audio from {audio_url} using method {download_method}. Check logs for details."
                logging.error(error_msg)
                yield verbose_messages + error_msg, "", None
                return
            else:
                verbose_messages += f"Successfully downloaded audio from {audio_url}\n"
                if verbose:
                    yield verbose_messages, "", None
        else:
            error_msg = "No audio source provided. Please upload an audio file, record audio, or enter a URL."
            logging.error(error_msg)
            yield verbose_messages + error_msg, "", None
            return

        # Convert start_time and end_time to float or None
        start_time = float(start_time) if start_time else None
        end_time = float(end_time) if end_time else None

        if start_time is not None or end_time is not None:
            audio_path = trim_audio(audio_path, start_time, end_time)
            is_temp_file = True  # The trimmed audio is a temporary file
            verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
            if verbose:
                yield verbose_messages, "", None

        # Model caching
        model_key = (pipeline_type, model_id)
        if model_key in loaded_models:
            model = loaded_models[model_key]
            logging.info("Loaded model from cache")
        else:
            if pipeline_type == "fun-asr-nano":
                model = AutoModel(
                    model=model_id,
                    trust_remote_code=True,
                    remote_code=f"./Fun-ASR/model.py",
                    vad_model=VAD_MODEL_LOCAL_PATH,  # Use local VAD model path
                    vad_kwargs={"max_single_segment_time": 30000},
                    device=device,
                    disable_update=True,
                    hub='ms',
                )
            elif pipeline_type == "sensevoice":
                model = AutoModel(
                    model=model_id,
                    trust_remote_code=False,
                    vad_model=VAD_MODEL_LOCAL_PATH,  # Use local VAD model path
                    vad_kwargs={"max_single_segment_time": 30000},
                    device=device,
                    disable_update=True,
                    hub='ms',
                )
            else:
                error_msg = "Invalid pipeline type. Only 'sensevoice' is supported."
                logging.error(error_msg)
                yield verbose_messages + error_msg, "", None
                return
            loaded_models[model_key] = model

        # Perform the transcription
        start_time_perf = time.time()
        
        if pipeline_type == "fun-asr-nano":
            system_prompt = "You are a helpful assistant."
            user_prompt = f"语音转写:<|startofspeech|>!{audio_path}<|endofspeech|>"
            contents_i = []
            contents_i.append({"role": "system", "content": system_prompt})
            contents_i.append({"role": "user", "content": user_prompt})
            contents_i.append({"role": "assistant", "content": "null"})
            print(audio_path)
            res = model.generate(
                input=[audio_path],
                use_itn=True,
                batch_size=1,
            )
        elif pipeline_type == "sensevoice":
            res = model.generate(
                input=audio_path,
                cache={},
                language="auto",  # "zh", "en", "yue", "ja", "ko", "nospeech"
                use_itn=True,
                batch_size_s=60,
                merge_vad=True,
                merge_length_s=15,
            )

        transcription = rich_transcription_postprocess(res[0]["text"])
        end_time_perf = time.time()

        # Calculate metrics
        transcription_time = end_time_perf - start_time_perf
        audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)

        metrics_output = (
            f"Transcription time: {transcription_time:.2f} seconds\n"
            f"Audio file size: {audio_file_size:.2f} MB\n"
        )

        # Save the transcription to a file
        transcription_file = save_transcription(transcription)

        # Always yield the final result, regardless of verbose setting
        final_metrics = verbose_messages + metrics_output
        yield final_metrics, transcription, transcription_file

    except Exception as e:
        error_msg = f"An error occurred during transcription: {str(e)}"
        logging.error(error_msg)
        yield verbose_messages + error_msg, "", None

    finally:
        # Clean up temporary audio files
        if audio_path and is_temp_file and os.path.exists(audio_path):
            os.remove(audio_path)
            

with gr.Blocks() as iface:
    gr.Markdown("# Audio Transcription")
    gr.Markdown("Transcribe audio using SenseVoice model with multilingual support.")
    
    with gr.Row():
        audio_input = gr.Audio(label="Upload or Record Audio", sources=["upload", "microphone"], type="filepath")
        audio_url = gr.Textbox(label="Or Enter URL of audio file (direct link only, no YouTube)")

    transcribe_button = gr.Button("Transcribe")

    with gr.Accordion("Advanced Options", open=False):
        with gr.Row():
            proxy_url = gr.Textbox(label="Proxy URL", placeholder="Enter proxy URL if needed", value="", lines=1)
            proxy_username = gr.Textbox(label="Proxy Username", placeholder="Proxy username (optional)", value="", lines=1)
            proxy_password = gr.Textbox(label="Proxy Password", placeholder="Proxy password (optional)", value="", lines=1, type="password")
        
        
        with gr.Row():
            pipeline_type = gr.Dropdown(
                choices=["sensevoice","fun-asr-nano"],
                label="Pipeline Type",
                value="fun-asr-nano"
            )
            model_id = gr.Dropdown(
                label="Model",
                choices=get_model_options("fun-asr-nano"),
                value=FUN_ASR_NANO_MODEL_PATH_LIST[0]  # Default to official Local Model
            )
        with gr.Row():
            download_method = gr.Dropdown(
                choices=["requests", "ffmpeg", "aria2", "wget"],
                label="Download Method",
                value="requests"
            )
        
        with gr.Row():
            start_time = gr.Number(label="Start Time (seconds)", value=None, minimum=0)
            end_time = gr.Number(label="End Time (seconds)", value=None, minimum=0)
            verbose = gr.Checkbox(label="Verbose Output", value=False)

    with gr.Row():
        metrics_output = gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10)
        transcription_output = gr.Textbox(label="Transcription", lines=10)
        transcription_file = gr.File(label="Download Transcription")

    def update_model_dropdown(pipeline_type):
        """
        Updates the model dropdown choices based on the selected pipeline type.

        Args:
            pipeline_type (str): The selected pipeline type.

        Returns:
            gr.update: Updated model dropdown component.
        """
        try:
            model_choices = get_model_options(pipeline_type)
            logging.info(f"Model choices for {pipeline_type}: {model_choices}")
            if model_choices:
                return gr.update(choices=model_choices, value=model_choices[0], visible=True)
            else:
                return gr.update(choices=["No models available"], value=None, visible=False)
        except Exception as e:
            logging.error(f"Error in update_model_dropdown: {str(e)}")
            return gr.update(choices=["Error"], value="Error", visible=True)

    # Event handler for pipeline_type change
    pipeline_type.change(update_model_dropdown, inputs=[pipeline_type], outputs=[model_id])
    
    def transcribe_with_progress(*args):
        # The audio_input is now the first argument
        for result in transcribe_audio(*args):
            yield result
    
    transcribe_button.click(
        transcribe_with_progress,
        inputs=[audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, download_method, start_time, end_time, verbose],
        outputs=[metrics_output, transcription_output, transcription_file]
    )
    
    # Note: For examples, users should use local audio files or upload their own files
    # Examples with specific paths may not work for all users

    gr.Markdown(f"""
    ### Usage Examples:
    1. **Upload Audio**: Click the "Upload or Record Audio" button to select your audio file
    2. **Select Pipeline Type**: Choose from available pipelines:
       - **Fun-ASR-Nano** (default) - Large language model based ASR model
       - **SenseVoice** - CTC-based based ASR model with VAD
    3. **Local Testing**: For development, you can use local paths as shown above

    Supported languages: 
        - Fun-ASR-Nano: more than 50 languages and Chinese dialects.
        - SenseVoiceSmall:Chinese (zh), English (en), Cantonese (yue), Japanese (ja), Korean (ko).
    """)

iface.queue().launch(share=False, debug=True)