Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| from huggingface_hub import InferenceClient | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| import os | |
| import base64 | |
| from io import BytesIO | |
| import json | |
| import time # Added for history update delay | |
| from gradio_client import Client, handle_file | |
| import tempfile | |
| from PIL import Image | |
| import os | |
| import gradio as gr | |
| def encode_image(pil_image): | |
| import io | |
| buffered = io.BytesIO() | |
| pil_image.save(buffered, format="PNG") | |
| return base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", | |
| transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| device_map='cuda'),torch_dtype=dtype).to(device) | |
| pipe.load_lora_weights( | |
| "lovis93/next-scene-qwen-image-lora-2509", | |
| weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene" | |
| ) | |
| pipe.set_adapters(["next-scene"], adapter_weights=[1.]) | |
| pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.) | |
| pipe.unload_lora_weights() | |
| # Apply the same optimizations from the first version | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| # --- Ahead-of-time compilation --- | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| # --- UI Constants and Helpers --- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def use_output_as_input(output_images): | |
| """Convert output images to input format for the gallery""" | |
| if output_images is None or len(output_images) == 0: | |
| return [] | |
| return output_images | |
| # --- Main Inference Function (with hardcoded negative prompt) --- | |
| def infer( | |
| image, | |
| prompt, | |
| seed=120, | |
| randomize_seed=False, | |
| true_guidance_scale=1.0, | |
| num_inference_steps=4, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """ | |
| Generates an image using the local Qwen-Image diffusers pipeline. | |
| """ | |
| # Hardcode the negative prompt as requested | |
| negative_prompt = " " | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Set up the generator for reproducibility | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| print(f"Calling pipeline with prompt: '{prompt}'") | |
| print(f"Negative Prompt: '{negative_prompt}'") | |
| print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}") | |
| # Generate the image | |
| images = pipe( | |
| image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1 | |
| ).images | |
| return images[0], seed | |
| # --- Examples and UI Layout --- | |
| examples = [] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1024px; | |
| } | |
| #edit_text{ | |
| margin-top: -62px !important | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">') | |
| gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input Image", show_label=False, type="pil") | |
| result = gr.Image(label="Result", show_label=False, type="pil") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| placeholder="describe the edit instruction", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Edit!", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| # Negative prompt UI element is removed here | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| true_guidance_scale = gr.Slider( | |
| label="True guidance scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=1.0 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=6, | |
| ) | |
| gr.Examples(examples=[ | |
| ["neon_sign.png", "change the text to read 'Qwen Image Edit is here'"], | |
| ["cat_sitting.jpg", "make the cat floating in the air and holding a sign that reads 'this is fun' written with a blue crayon"], | |
| ["pie.png", "turn the style of the photo to vintage comic book"]], | |
| inputs=[input_image, prompt], | |
| outputs=[result, seed], | |
| fn=infer, | |
| cache_examples="lazy") | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |