Spaces:
Running
Running
| from transformers import pipeline | |
| # Load the Hugging Face pipeline | |
| def load_model(task="summarization", framework="pt"): | |
| """ | |
| Load the specified task model using Hugging Face's pipeline. | |
| Default is PyTorch ('pt') as the framework. | |
| """ | |
| model = pipeline(task=task, model="facebook/bart-large-cnn", framework=framework) | |
| return model | |
| # Summarization function | |
| def summarize_text(model, text): | |
| """ | |
| Summarize the provided legal text. | |
| """ | |
| if not text.strip(): | |
| return "Please provide input text." | |
| result = model(text, max_length=150, min_length=40, do_sample=False) | |
| return result[0]['summary_text'] | |
| # Question Answering function | |
| def answer_question(model, question, context): | |
| """ | |
| Answer a question based on the provided legal context. | |
| """ | |
| if not context.strip() or not question.strip(): | |
| return "Please provide both a context and a question." | |
| result = model(question=question, context=context) | |
| return result['answer'] |