File size: 14,834 Bytes
f810b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66febf2
f810b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66febf2
f810b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import gradio as gr
from os import getenv, environ
from dotenv import load_dotenv
import os
from model import ModelManager
# Configurar la variable de entorno para evitar advertencias de tokenizers (huggingface opcional)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
 
from groq import AsyncClient 
from fastrtc import WebRTC, ReplyOnPause, audio_to_bytes, AdditionalOutputs
import numpy as np
import asyncio 
from elevenlabs.client import ElevenLabs
from elevenlabs import VoiceSettings

from langchain_text_splitters.markdown import MarkdownHeaderTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_core.messages import HumanMessage, AIMessage

from agent import RestaurantAgent
# Importar las herramientas
from tools import create_menu_info_tool, create_send_to_kitchen_tool

from utils.logger import log_info, log_warn, log_error, log_success, log_debug

load_dotenv()

# Initialize clients and models to None, will be set during runtime
groq_client = None
eleven_client = None
llm = None
waiter_agent = None

# region RAG
md_path = "data/carta.md"

with open(md_path, "r", encoding="utf-8") as file:
    md_content = file.read()

splitter = MarkdownHeaderTextSplitter(
    headers_to_split_on=[
        ("#", "seccion_principal"),
        ("##", "categoria"),
    ], 
    strip_headers=False)
splits = splitter.split_text(md_content)
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-m3", model_kwargs = {'device': 'cpu'})
vector_store = InMemoryVectorStore.from_documents(splits, embeddings)

retriever = vector_store.as_retriever(search_kwargs={"k": 4})
# endregion

# Initialize tools to None
guest_info_tool = None
send_to_kitchen_tool = None
tools = None

# Function to initialize all components with provided API keys
def initialize_components(openrouter_key, groq_key, elevenlabs_key, model_name):
    global groq_client, eleven_client, llm, waiter_agent, guest_info_tool, send_to_kitchen_tool, tools
    
    log_info("Initializing components with provided API keys...")
    
    # Initialize clients with provided keys
    if groq_key:
        groq_client = AsyncClient(api_key=groq_key)
    
    if elevenlabs_key:
        eleven_client = ElevenLabs(api_key=elevenlabs_key)
    
    if openrouter_key:
        # Initialize LLM
        model_manager = ModelManager(
            api_key=openrouter_key,
            api_base=getenv("OPENROUTER_BASE_URL", "https://openrouter.ai/api/v1"),
            model_name=model_name,
            helicone_api_key=getenv("HELICONE_API_KEY", "")
        )
        llm = model_manager.create_model()
        
        # Initialize tools
        guest_info_tool = create_menu_info_tool(retriever)
        send_to_kitchen_tool = create_send_to_kitchen_tool(llm=llm)
        tools = [guest_info_tool, send_to_kitchen_tool]
        
        # Initialize the agent
        waiter_agent = RestaurantAgent(
            llm=llm,
            tools=tools
        )
        
        log_success("Components initialized successfully.")
    else:
        log_warn("OpenRouter API key is required for LLM initialization.")
    
    return {
        "groq_client": groq_client is not None,
        "eleven_client": eleven_client is not None,
        "llm": llm is not None,
        "agent": waiter_agent is not None
    }

# region FUNCTIONS
async def handle_text_input(message, history, openrouter_key, groq_key, elevenlabs_key, model_name):
    """Handles text input, generates response, updates chat history."""
    global waiter_agent, llm
    
    # Initialize components if needed
    if waiter_agent is None or llm is None or model_name != getattr(llm, "model_name", ""):
        status = initialize_components(openrouter_key, groq_key, elevenlabs_key, model_name)
        if not status["agent"]:
            return history + [
                {"role": "user", "content": message},
                {"role": "assistant", "content": "Error: Could not initialize the agent. Please check your API keys."}
            ]
    
    current_history = history if isinstance(history, list) else []
    log_info("-" * 20) 
    log_info(f"Received text input: '{message}', current history: {current_history}")

    try:
        # 1. Actualizar el historial con el mensaje del usuario
        user_message = {"role": "user", "content": message}
        history_with_user = current_history + [user_message]

        # 2. Invocar al agente con la consulta del usuario
        log_info("Iniciando procesamiento con LangGraph...")
        
        # Invocar el agente con el texto de la consulta
        langchain_messages = []
        for msg in current_history:
            if msg["role"] == "user":
                langchain_messages.append(HumanMessage(content=msg["content"]))
            elif msg["role"] == "assistant":
                langchain_messages.append(AIMessage(content=msg["content"]))
    
        langchain_messages.append(HumanMessage(content=message))

        graph_result = waiter_agent.invoke(langchain_messages)
        
        log_debug(f"Resultado del agente: {graph_result}")
        
        messages = graph_result.get("messages", [])
        assistant_text = ""
        
        for msg in reversed(messages):
            # LangChain puede devolver diferentes clases de mensajes
            if hasattr(msg, "__class__") and msg.__class__.__name__ == "AIMessage":
                assistant_text = msg.content
                break
        
        if not assistant_text:
            log_warn("No se encontró respuesta del asistente en los mensajes.")
            assistant_text = "Lo siento, no sé cómo responder a eso."

        log_info(f"Assistant text: '{assistant_text}'")

        # 3. Actualizar el historial con el mensaje del asistente
        assistant_message = {"role": "assistant", "content": assistant_text}
        final_history = history_with_user + [assistant_message]
        
        log_success("Tarea completada con éxito.")
        return final_history

    except Exception as e:
        log_error(f"Error in handle_text_input function: {e}")
        import traceback
        traceback.print_exc()
        return current_history + [
            {"role": "user", "content": message},
            {"role": "assistant", "content": f"Error: {str(e)}"}
        ]
    
async def response(audio: tuple[int, np.ndarray], history, openrouter_key, groq_key, elevenlabs_key, model_name): 
    """Handles audio input, generates response, yields UI updates and audio."""
    global waiter_agent, llm, groq_client, eleven_client
    
    # Initialize components if needed
    if waiter_agent is None or llm is None or groq_client is None or eleven_client is None or model_name != getattr(llm, "model_name", ""):
        status = initialize_components(openrouter_key, groq_key, elevenlabs_key, model_name)
        if not status["groq_client"]:
            yield AdditionalOutputs(history + [{"role": "assistant", "content": "Error: Groq API key is required for audio processing."}])
            return
        if not status["eleven_client"]:
            yield AdditionalOutputs(history + [{"role": "assistant", "content": "Error: ElevenLabs API key is required for audio processing."}])
            return
        if not status["agent"]:
            yield AdditionalOutputs(history + [{"role": "assistant", "content": "Error: Could not initialize the agent. Please check your OpenRouter API key."}])
            return

    current_history = history if isinstance(history, list) else []
    log_info("-" * 20)
    log_info(f"Received audio, current history: {current_history}")

    try:
        # 1. Transcribir el audio a texto
        audio_bytes = audio_to_bytes(audio)
        transcript = await groq_client.audio.transcriptions.create(
            file=("audio-file.mp3", audio_bytes),
            model="whisper-large-v3-turbo",
            response_format="verbose_json",
        )
        user_text = transcript.text.strip()

        log_info(f"Transcription: '{user_text}'")

        # 2. Actualizar el historial con el mensaje del usuario
        user_message = {"role": "user", "content": user_text}
        history_with_user = current_history + [user_message]

        log_info(f"Yielding user message update to UI: {history_with_user}")
        yield AdditionalOutputs(history_with_user)
        await asyncio.sleep(0.04) # Permite que la UI se actualice antes de continuar

        # 4. Invocar al agente con la consulta del usuario
        log_info("Iniciando procesamiento con LangGraph...")
        
        langchain_messages = []
        for msg in current_history:
            if msg["role"] == "user":
                langchain_messages.append(HumanMessage(content=msg["content"]))
            elif msg["role"] == "assistant":
                langchain_messages.append(AIMessage(content=msg["content"]))

        langchain_messages.append(HumanMessage(content=user_text))

        graph_result = waiter_agent.invoke(langchain_messages)
        
        log_debug(f"Resultado del agente: {graph_result}")
        
        # Extraer la respuesta del último mensaje del asistente
        messages = graph_result.get("messages", [])
        assistant_text = ""
        
        # Buscar el último mensaje del asistente
        for msg in reversed(messages):
            if hasattr(msg, "__class__") and msg.__class__.__name__ == "AIMessage":
                assistant_text = msg.content
                break
        
        if not assistant_text:
            log_warn("No se encontró respuesta del asistente en los mensajes.")
            assistant_text = "Lo siento, no sé cómo responder a eso."

        log_info(f"Assistant text: '{assistant_text}'")

        # 5. Actualizar el historial con el mensaje del asistente
        assistant_message = {"role": "assistant", "content": assistant_text}
        final_history = history_with_user + [assistant_message]

        # 6. Generar la respuesta de voz
        log_info("Generating TTS...")
        TARGET_SAMPLE_RATE = 24000 # <<< --- Tasa de muestreo deseada
        tts_stream_generator = eleven_client.text_to_speech.convert(
                text=assistant_text,
                voice_id="Nh2zY9kknu6z4pZy6FhD",
                model_id="eleven_flash_v2_5",
                output_format="pcm_24000",
                voice_settings=VoiceSettings(
                    stability=0.0,
                    similarity_boost=1.0, 
                    style=0.0,
                    use_speaker_boost=True,
                    speed=1.1,
                )
            )
        
        # --- Procesar los chunks a medida que llegan ---
        log_info("Receiving and processing TTS audio chunks...")
        audio_chunks = []
        total_bytes = 0

        for chunk in tts_stream_generator:
            total_bytes += len(chunk)
            
            # Convertir chunk actual de bytes PCM (int16) a float32 normalizado
            if chunk:
                audio_int16 = np.frombuffer(chunk, dtype=np.int16)
                audio_float32 = audio_int16.astype(np.float32) / 32768.0
                audio_float32 = np.clip(audio_float32, -1.0, 1.0)  # Asegurar rango
                audio_chunks.append(audio_float32)

        log_info(f"Received {total_bytes} bytes of TTS audio in total.")

        # Concatenar todos los chunks procesados
        if audio_chunks:
            final_audio = np.concatenate(audio_chunks)
            log_info(f"Processed {len(final_audio)} audio samples.")
        else:
            log_warn("Warning: TTS returned empty audio stream.")
            final_audio = np.array([], dtype=np.float32)
 
        # Crear la tupla final
        tts_output_tuple = (TARGET_SAMPLE_RATE, final_audio)
    
        log_debug(f"TTS output: {tts_output_tuple}")   
        log_success("Tarea completada con éxito.")
        yield tts_output_tuple
        yield AdditionalOutputs(final_history) 
    
    except Exception as e:
        log_error(f"Error in response function: {e}")
        import traceback
        traceback.print_exc()
      
        yield np.array([]).astype(np.int16).tobytes()
        yield AdditionalOutputs(current_history + [{"role": "assistant", "content": f"Error: {str(e)}"}])
# endregion

with gr.Blocks() as demo:
    gr.Markdown("# WAIter Chatbot")
    with gr.Row():
        text_openrouter_api_key = gr.Textbox(
            label="OpenRouter API Key (required)",
            placeholder="Enter your OpenRouter API key",
            value=getenv("OPENROUTER_API_KEY") or "",
            type="password",
        )
        text_groq_api_key = gr.Textbox(
            label="Groq API Key (required for audio)",
            placeholder="Enter your Groq API key",
            value=getenv("GROQ_API_KEY") or "",
            type="password",
        )
        text_elevenlabs_api_key = gr.Textbox(
            label="Elevenlabs API Key (required for audio)",
            placeholder="Enter your Elevenlabs API key",
            value=getenv("ELEVENLABS_API_KEY") or "",
            type="password",
        )
        
    chatbot = gr.Chatbot(
        label="Agent",
        type="messages",
        value=[],
        avatar_images=(
            None, # User avatar
            "https://em-content.zobj.net/source/twitter/376/hugging-face_1f917.png", # Assistant
        ),
    )

    with gr.Row():
        model_dropdown = gr.Dropdown(
            label="Select Model",
            choices=["google/gemini-2.5-flash-preview-05-20"],
        )

        text_input = gr.Textbox(
            label="Type your message",
            placeholder="Type here and press Enter...",
            show_label=True,
        )

        audio = WebRTC(
            label="Speak Here",
            mode="send-receive", 
            modality="audio",
        )
    
    text_input.submit(
        fn=handle_text_input,
        inputs=[
            text_input, 
            chatbot, 
            text_openrouter_api_key, 
            text_groq_api_key, 
            text_elevenlabs_api_key,
            model_dropdown
        ],
        outputs=[chatbot],
        api_name="submit_text"
    ).then(
        fn=lambda: "",  # Limpiar el campo de texto
        outputs=[text_input]
    )

    # Se encarga de manejar la entrada de audio
    audio.stream(
        fn=ReplyOnPause(
            response, 
            can_interrupt=True,
        ), 
        inputs=[audio, chatbot, text_openrouter_api_key, text_groq_api_key, text_elevenlabs_api_key, model_dropdown], 
        outputs=[audio], 
    )

    # Actualiza el historial de la conversación
    audio.on_additional_outputs(
        fn=lambda history_update: history_update, # Envia el historial actualizado 
        outputs=[chatbot], # Actualiza el chatbot 
    )

if __name__ == "__main__":
    demo.launch()