Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import warnings | |
| from typing import Callable, List, Optional, Union | |
| import PIL | |
| import torch | |
| import torchvision.transforms.functional as TF | |
| from packaging import version | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import deprecate, logging, randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class MVDiffusionImagePipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline to generate image variations from an input image using Stable Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): | |
| Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| text_encoder ([`~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
| about a model's potential harms. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
| """ | |
| # TODO: feature_extractor is required to encode images (if they are in PIL format), | |
| # we should give a descriptive message if the pipeline doesn't have one. | |
| _optional_components = ["safety_checker"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| requires_safety_checker: bool = True, | |
| camera_embedding_type: str = 'e_de_da_sincos', | |
| num_views: int = 4 | |
| ): | |
| super().__init__() | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warn( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse("0.9.0.dev0") | |
| is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| image_encoder=image_encoder, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| self.camera_embedding_type: str = camera_embedding_type | |
| self.num_views: int = num_views | |
| def _encode_image(self, image_pil, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| image_pt = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values | |
| image_pt = image_pt.to(device=device, dtype=dtype) | |
| image_embeddings = self.image_encoder(image_pt).image_embeds | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| # Note: repeat differently from official pipelines | |
| # B1B2B3B4 -> B1B2B3B4B1B2B3B4 | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device) | |
| image_pt = image_pt * 2.0 - 1.0 | |
| image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor | |
| # Note: repeat differently from official pipelines | |
| # B1B2B3B4 -> B1B2B3B4B1B2B3B4 | |
| image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1) | |
| if do_classifier_free_guidance: | |
| image_latents = torch.cat([torch.zeros_like(image_latents), image_latents]) | |
| return image_embeddings, image_latents | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| warnings.warn( | |
| "The decode_latents method is deprecated and will be removed in a future version. Please" | |
| " use VaeImageProcessor instead", | |
| FutureWarning, | |
| ) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, image, height, width, callback_steps): | |
| if ( | |
| not isinstance(image, torch.Tensor) | |
| and not isinstance(image, PIL.Image.Image) | |
| and not isinstance(image, list) | |
| ): | |
| raise ValueError( | |
| "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" | |
| f" {type(image)}" | |
| ) | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def prepare_camera_embedding(self, camera_embedding: Union[float, torch.Tensor], do_classifier_free_guidance, num_images_per_prompt=1): | |
| # (B, 3) | |
| camera_embedding = camera_embedding.to(dtype=self.unet.dtype, device=self.unet.device) | |
| if self.camera_embedding_type == 'e_de_da_sincos': | |
| # (B, 6) | |
| camera_embedding = torch.cat([ | |
| torch.sin(camera_embedding), | |
| torch.cos(camera_embedding) | |
| ], dim=-1) | |
| assert self.unet.config.class_embed_type == 'projection' | |
| assert self.unet.config.projection_class_embeddings_input_dim == 6 or self.unet.config.projection_class_embeddings_input_dim == 10 | |
| else: | |
| raise NotImplementedError | |
| # Note: repeat differently from official pipelines | |
| # B1B2B3B4 -> B1B2B3B4B1B2B3B4 | |
| camera_embedding = camera_embedding.repeat(num_images_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| camera_embedding = torch.cat([ | |
| camera_embedding, | |
| camera_embedding | |
| ], dim=0) | |
| return camera_embedding | |
| def __call__( | |
| self, | |
| image: Union[List[PIL.Image.Image], torch.FloatTensor], | |
| # elevation_cond: torch.FloatTensor, | |
| # elevation: torch.FloatTensor, | |
| # azimuth: torch.FloatTensor, | |
| camera_embedding: torch.FloatTensor, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| normal_cond: Optional[Union[List[PIL.Image.Image], torch.FloatTensor]] = None, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): | |
| Image or images to guide image generation. If you provide a tensor, it needs to be compatible with | |
| [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. This parameter is modulated by `strength`. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| Examples: | |
| ```py | |
| from diffusers import StableDiffusionImageVariationPipeline | |
| from PIL import Image | |
| from io import BytesIO | |
| import requests | |
| pipe = StableDiffusionImageVariationPipeline.from_pretrained( | |
| "lambdalabs/sd-image-variations-diffusers", revision="v2.0" | |
| ) | |
| pipe = pipe.to("cuda") | |
| url = "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200" | |
| response = requests.get(url) | |
| image = Image.open(BytesIO(response.content)).convert("RGB") | |
| out = pipe(image, num_images_per_prompt=3, guidance_scale=15) | |
| out["images"][0].save("result.jpg") | |
| ``` | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(image, height, width, callback_steps) | |
| # 2. Define call parameters | |
| if isinstance(image, list): | |
| batch_size = len(image) | |
| else: | |
| batch_size = image.shape[0] | |
| assert batch_size >= self.num_views and batch_size % self.num_views == 0 | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale != 1.0 | |
| # 3. Encode input image | |
| if isinstance(image, list): | |
| image_pil = image | |
| elif isinstance(image, torch.Tensor): | |
| image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])] | |
| image_embeddings, image_latents = self._encode_image(image_pil, device, num_images_per_prompt, do_classifier_free_guidance) | |
| if normal_cond is not None: | |
| if isinstance(normal_cond, list): | |
| normal_cond_pil = normal_cond | |
| elif isinstance(normal_cond, torch.Tensor): | |
| normal_cond_pil = [TF.to_pil_image(normal_cond[i]) for i in range(normal_cond.shape[0])] | |
| _, image_latents = self._encode_image(normal_cond_pil, device, num_images_per_prompt, do_classifier_free_guidance) | |
| # assert len(elevation_cond) == batch_size and len(elevation) == batch_size and len(azimuth) == batch_size | |
| # camera_embeddings = self.prepare_camera_condition(elevation_cond, elevation, azimuth, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt) | |
| assert len(camera_embedding) == batch_size | |
| camera_embeddings = self.prepare_camera_embedding(camera_embedding, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.out_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| image_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = torch.cat([ | |
| latent_model_input, image_latents | |
| ], dim=1) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings, class_labels=camera_embeddings).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if not output_type == "latent": | |
| if num_channels_latents == 8: | |
| latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0) | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, image_embeddings.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |