Spaces:
Sleeping
Sleeping
File size: 9,306 Bytes
a1ece96 981d69e a1ece96 b507438 a1ece96 b507438 981d69e a1ece96 981d69e a1ece96 981d69e a1ece96 981d69e a1ece96 981d69e a1ece96 981d69e a1ece96 981d69e a1ece96 981d69e a1ece96 981d69e a1ece96 981d69e a1ece96 981d69e a1ece96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
from langchain_community.document_loaders import DirectoryLoader, PyPDFLoader, Docx2txtLoader
from pathlib import Path
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Chroma
from itertools import combinations
import numpy as np
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFaceEndpoint
import gradio as gr
import os
import zipfile
from dotenv import load_dotenv
# from llama.api import HuggingFaceEndpoint
load_dotenv()
LOCAL_VECTOR_STORE_DIR = Path('./data')
def langchain_document_loader(TMP_DIR):
"""
Load documents from the temporary directory (TMP_DIR).
Files can be in txt, pdf, CSV or docx format.
"""
documents = []
# txt_loader = DirectoryLoader(
# TMP_DIR.as_posix(), glob="**/*.txt", loader_cls=TextLoader, show_progress=True
# )
# documents.extend(txt_loader.load())
pdf_loader = DirectoryLoader(
TMP_DIR.as_posix(), glob="**/*.pdf", loader_cls=PyPDFLoader, show_progress=True
)
documents.extend(pdf_loader.load())
# csv_loader = DirectoryLoader(
# TMP_DIR.as_posix(), glob="**/*.csv", loader_cls=CSVLoader, show_progress=True,
# loader_kwargs={"encoding":"utf8"}
# )
# documents.extend(csv_loader.load())
doc_loader = DirectoryLoader(
TMP_DIR.as_posix(),
glob="**/*.docx",
loader_cls=Docx2txtLoader,
show_progress=True,
)
documents.extend(doc_loader.load())
return documents
zip_file_path = 'course reviews.zip'
# Get the directory of the zip file
current_dir = os.getcwd()
print(current_dir)
# Extract the zip file in the same directory
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(current_dir)
directory_path = 'course reviews'
TMP_DIR = Path(directory_path)
documents = langchain_document_loader(TMP_DIR)
HUGGING_FACE_API_KEY = os.getenv("HUGGING_FACE_API_KEY") # Using our secret API key from the .env file
def select_embedding_model():
# embedding = OllamaEmbeddings(model='nomic-embed-text')
embedding = HuggingFaceInferenceAPIEmbeddings(
api_key=HUGGING_FACE_API_KEY,
model_name="sentence-transformers/all-MiniLM-L6-v2" #This is the embedding model
)
return embedding
embeddings = select_embedding_model() # Calling the function to select the model
def create_vectorstore(embeddings,documents,vectorstore_name):
"""Create a Chroma vector database."""
persist_directory = (LOCAL_VECTOR_STORE_DIR.as_posix() + "/" + vectorstore_name)
vector_store = Chroma.from_documents(
documents=documents,
embedding=embeddings,
persist_directory=persist_directory
)
return vector_store
create_vectorstores = True # change to True to create vectorstores
if create_vectorstores:
vector_store = create_vectorstore(embeddings,documents,"vector_store")
print("Vector store created")
print("")
vector_store = Chroma(persist_directory = LOCAL_VECTOR_STORE_DIR.as_posix() + "/vector_store",
embedding_function=embeddings)
print("vector_store:",vector_store._collection.count(),"chunks.")
def Vectorstore_backed_retriever(vectorstore,search_type="mmr",k=6,score_threshold=None):
"""create a vectorsore-backed retriever
Parameters:
search_type: Defines the type of search that the Retriever should perform.
Can be "similarity" (default), "mmr", or "similarity_score_threshold"
k: number of documents to return (Default: 4)
score_threshold: Minimum relevance threshold for similarity_score_threshold (default=None)
"""
search_kwargs={}
if k is not None:
search_kwargs['k'] = k
if score_threshold is not None:
search_kwargs['score_threshold'] = score_threshold
retriever = vectorstore.as_retriever(
search_type=search_type,
search_kwargs=search_kwargs
)
return retriever
# Similarity search
retriever = Vectorstore_backed_retriever(vector_store,search_type="similarity",k=4)
def instantiate_LLM(api_key,temperature=0.5,top_p=0.95,model_name=None):
"""Instantiate LLM in Langchain.
Parameters:
LLM_provider (str): the LLM provider; in ["OpenAI","Google","HuggingFace"]
model_name (str): in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview",
"gemini-pro", "mistralai/Mistral-7B-Instruct-v0.2"].
api_key (str): google_api_key or openai_api_key or huggingfacehub_api_token
temperature (float): Range: 0.0 - 1.0; default = 0.5
top_p (float): : Range: 0.0 - 1.0; default = 1.
"""
llm = HuggingFaceEndpoint(
# repo_id = "openai-community/gpt2-large",
# repo_id = "google/gemma-2b-it",
repo_id="mistralai/Mistral-7B-Instruct-v0.2", # working
# repo_id = "NexaAIDev/Octopus-v4",
# repo_id="Snowflake/snowflake-arctic-instruct",
# repo_id="apple/OpenELM-3B-Instruct", # erros: remote trust something
# repo_id="meta-llama/Meta-Llama-3-8B-Instruct", # Takes too long
# repo_id="mistralai/Mixtral-8x22B-Instruct-v0.1", # RAM insufficient
# repo_id=model_name,
huggingfacehub_api_token=api_key,
# model_kwargs={
# "temperature":temperature,
# "top_p": top_p,
# "do_sample": True,
# "max_new_tokens":1024
# },
# model_kwargs={stop: "Human:", "stop_sequence": "Human:"},
stop_sequences = ["Human:"],
temperature=temperature,
top_p=top_p,
do_sample=True,
max_new_tokens=1024,
trust_remote_code=True
)
return llm
# get the API key from .env file
llm = instantiate_LLM(api_key=HUGGING_FACE_API_KEY)
def create_memory():
"""Creates a ConversationSummaryBufferMemory for our model
Creates a ConversationBufferWindowMemory for our models."""
memory = ConversationBufferMemory(
memory_key="history",
input_key="question",
return_messages=True,
k=3
)
return memory
memory = create_memory()
memory.save_context(
{"question": "What can you do?"},
{"output": "I can answer queries based on the past reviews and course outlines of various courses offered at LUMS."}
)
context_qa = """
You are a professional chatbot assistant for helping students at LUMS regarding course selection.
Please follow the following rules:
1. Answer the question in your own words from the context given to you.
2. If you don't know the answer, don't try to make up an answer.
3. If you don't have a course's review or outline, just say that you do not know about this course.
4. If a user enters a course code (e.g. ECON100 or CS370), match it with reviews with that course code. If the user enters a course name (e.g. Introduction to Economics or Database Systems), match it with reviews with that course name.
5. If you do not have information of a course, do not make up a course or suggest courses from universities other than LUMS.
Context: {context}
You are having a converation with a student at LUMS.
Chat History: {history}
Human: {question}
Assistant:
"""
prompt = PromptTemplate(
input_variables=["history", "context", "question"],
template=context_qa
)
qa = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
verbose=False,
return_source_documents=False,
chain_type_kwargs={
"prompt": prompt,
"memory": memory
},
)
# Global list to store chat history
chat_history = []
def print_documents(docs,search_with_score=False):
"""helper function to print documents."""
if search_with_score:
# used for similarity_search_with_score
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + doc[0].page_content +"\n\nscore:"+str(round(doc[-1],3))+"\n"
for i, doc in enumerate(docs)]
)
)
else:
# used for similarity_search or max_marginal_relevance_search
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + doc.page_content
for i, doc in enumerate(docs)]
)
)
def rag_model(query):
# Your RAG model code here
result = qa({'query': query})
relevant_docs = retriever.get_relevant_documents(query)
print_documents(relevant_docs)
# Extract the answer from the result
answer = result['result']
# print(result)
# Append the query and answer to the chat history
chat_history.append(f'User: {query}\nAssistant: {answer}\n')
# Join the chat history into a string
chat_string = '\n'.join(chat_history)
return chat_string
# This is for Gradio interface
gradio_app = gr.Interface(fn=rag_model, inputs="text", outputs="text", title="RAGs to Riches", theme=gr.themes.Soft(), description="This is a RAG model that can answer queries based on the past reviews and course outlines of various courses offered at LUMS.")
if __name__ == "__main__":
gradio_app.launch()
|