Spaces:
Sleeping
Sleeping
from langchain_community.document_loaders import DirectoryLoader, PyPDFLoader, Docx2txtLoader | |
from pathlib import Path | |
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from itertools import combinations | |
import numpy as np | |
from langchain.memory import ConversationBufferMemory | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import RetrievalQA | |
from langchain_community.llms import HuggingFaceEndpoint | |
import gradio as gr | |
import os | |
import zipfile | |
from dotenv import load_dotenv | |
# from llama.api import HuggingFaceEndpoint | |
load_dotenv() | |
LOCAL_VECTOR_STORE_DIR = Path('./data') | |
def langchain_document_loader(TMP_DIR): | |
""" | |
Load documents from the temporary directory (TMP_DIR). | |
Files can be in txt, pdf, CSV or docx format. | |
""" | |
documents = [] | |
# txt_loader = DirectoryLoader( | |
# TMP_DIR.as_posix(), glob="**/*.txt", loader_cls=TextLoader, show_progress=True | |
# ) | |
# documents.extend(txt_loader.load()) | |
pdf_loader = DirectoryLoader( | |
TMP_DIR.as_posix(), glob="**/*.pdf", loader_cls=PyPDFLoader, show_progress=True | |
) | |
documents.extend(pdf_loader.load()) | |
# csv_loader = DirectoryLoader( | |
# TMP_DIR.as_posix(), glob="**/*.csv", loader_cls=CSVLoader, show_progress=True, | |
# loader_kwargs={"encoding":"utf8"} | |
# ) | |
# documents.extend(csv_loader.load()) | |
doc_loader = DirectoryLoader( | |
TMP_DIR.as_posix(), | |
glob="**/*.docx", | |
loader_cls=Docx2txtLoader, | |
show_progress=True, | |
) | |
documents.extend(doc_loader.load()) | |
return documents | |
zip_file_path = 'course reviews.zip' | |
# Get the directory of the zip file | |
current_dir = os.getcwd() | |
print(current_dir) | |
# Extract the zip file in the same directory | |
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: | |
zip_ref.extractall(current_dir) | |
directory_path = 'course reviews' | |
TMP_DIR = Path(directory_path) | |
documents = langchain_document_loader(TMP_DIR) | |
HUGGING_FACE_API_KEY = os.getenv("HUGGING_FACE_API_KEY") # Using our secret API key from the .env file | |
def select_embedding_model(): | |
# embedding = OllamaEmbeddings(model='nomic-embed-text') | |
embedding = HuggingFaceInferenceAPIEmbeddings( | |
api_key=HUGGING_FACE_API_KEY, | |
model_name="sentence-transformers/all-MiniLM-L6-v2" #This is the embedding model | |
) | |
return embedding | |
embeddings = select_embedding_model() # Calling the function to select the model | |
def create_vectorstore(embeddings,documents,vectorstore_name): | |
"""Create a Chroma vector database.""" | |
persist_directory = (LOCAL_VECTOR_STORE_DIR.as_posix() + "/" + vectorstore_name) | |
vector_store = Chroma.from_documents( | |
documents=documents, | |
embedding=embeddings, | |
persist_directory=persist_directory | |
) | |
return vector_store | |
create_vectorstores = True # change to True to create vectorstores | |
if create_vectorstores: | |
vector_store = create_vectorstore(embeddings,documents,"vector_store") | |
print("Vector store created") | |
print("") | |
vector_store = Chroma(persist_directory = LOCAL_VECTOR_STORE_DIR.as_posix() + "/vector_store", | |
embedding_function=embeddings) | |
print("vector_store:",vector_store._collection.count(),"chunks.") | |
def Vectorstore_backed_retriever(vectorstore,search_type="mmr",k=6,score_threshold=None): | |
"""create a vectorsore-backed retriever | |
Parameters: | |
search_type: Defines the type of search that the Retriever should perform. | |
Can be "similarity" (default), "mmr", or "similarity_score_threshold" | |
k: number of documents to return (Default: 4) | |
score_threshold: Minimum relevance threshold for similarity_score_threshold (default=None) | |
""" | |
search_kwargs={} | |
if k is not None: | |
search_kwargs['k'] = k | |
if score_threshold is not None: | |
search_kwargs['score_threshold'] = score_threshold | |
retriever = vectorstore.as_retriever( | |
search_type=search_type, | |
search_kwargs=search_kwargs | |
) | |
return retriever | |
# Similarity search | |
retriever = Vectorstore_backed_retriever(vector_store,search_type="similarity",k=4) | |
def instantiate_LLM(api_key,temperature=0.5,top_p=0.95,model_name=None): | |
"""Instantiate LLM in Langchain. | |
Parameters: | |
LLM_provider (str): the LLM provider; in ["OpenAI","Google","HuggingFace"] | |
model_name (str): in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview", | |
"gemini-pro", "mistralai/Mistral-7B-Instruct-v0.2"]. | |
api_key (str): google_api_key or openai_api_key or huggingfacehub_api_token | |
temperature (float): Range: 0.0 - 1.0; default = 0.5 | |
top_p (float): : Range: 0.0 - 1.0; default = 1. | |
""" | |
llm = HuggingFaceEndpoint( | |
# repo_id = "openai-community/gpt2-large", | |
# repo_id = "google/gemma-2b-it", | |
repo_id="mistralai/Mistral-7B-Instruct-v0.2", # working | |
# repo_id = "NexaAIDev/Octopus-v4", | |
# repo_id="Snowflake/snowflake-arctic-instruct", | |
# repo_id="apple/OpenELM-3B-Instruct", # erros: remote trust something | |
# repo_id="meta-llama/Meta-Llama-3-8B-Instruct", # Takes too long | |
# repo_id="mistralai/Mixtral-8x22B-Instruct-v0.1", # RAM insufficient | |
# repo_id=model_name, | |
huggingfacehub_api_token=api_key, | |
# model_kwargs={ | |
# "temperature":temperature, | |
# "top_p": top_p, | |
# "do_sample": True, | |
# "max_new_tokens":1024 | |
# }, | |
# model_kwargs={stop: "Human:", "stop_sequence": "Human:"}, | |
stop_sequences = ["Human:"], | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
max_new_tokens=1024, | |
trust_remote_code=True | |
) | |
return llm | |
# get the API key from .env file | |
llm = instantiate_LLM(api_key=HUGGING_FACE_API_KEY) | |
def create_memory(): | |
"""Creates a ConversationSummaryBufferMemory for our model | |
Creates a ConversationBufferWindowMemory for our models.""" | |
memory = ConversationBufferMemory( | |
memory_key="history", | |
input_key="question", | |
return_messages=True, | |
k=3 | |
) | |
return memory | |
memory = create_memory() | |
memory.save_context( | |
{"question": "What can you do?"}, | |
{"output": "I can answer queries based on the past reviews and course outlines of various courses offered at LUMS."} | |
) | |
context_qa = """ | |
You are a professional chatbot assistant for helping students at LUMS regarding course selection. | |
Please follow the following rules: | |
1. Answer the question in your own words from the context given to you. | |
2. If you don't know the answer, don't try to make up an answer. | |
3. If you don't have a course's review or outline, just say that you do not know about this course. | |
4. If a user enters a course code (e.g. ECON100 or CS370), match it with reviews with that course code. If the user enters a course name (e.g. Introduction to Economics or Database Systems), match it with reviews with that course name. | |
5. If you do not have information of a course, do not make up a course or suggest courses from universities other than LUMS. | |
Context: {context} | |
You are having a converation with a student at LUMS. | |
Chat History: {history} | |
Human: {question} | |
Assistant: | |
""" | |
prompt = PromptTemplate( | |
input_variables=["history", "context", "question"], | |
template=context_qa | |
) | |
qa = RetrievalQA.from_chain_type( | |
llm=llm, | |
retriever=retriever, | |
verbose=False, | |
return_source_documents=False, | |
chain_type_kwargs={ | |
"prompt": prompt, | |
"memory": memory | |
}, | |
) | |
# Global list to store chat history | |
chat_history = [] | |
def print_documents(docs,search_with_score=False): | |
"""helper function to print documents.""" | |
if search_with_score: | |
# used for similarity_search_with_score | |
print( | |
f"\n{'-' * 100}\n".join( | |
[f"Document {i+1}:\n\n" + doc[0].page_content +"\n\nscore:"+str(round(doc[-1],3))+"\n" | |
for i, doc in enumerate(docs)] | |
) | |
) | |
else: | |
# used for similarity_search or max_marginal_relevance_search | |
print( | |
f"\n{'-' * 100}\n".join( | |
[f"Document {i+1}:\n\n" + doc.page_content | |
for i, doc in enumerate(docs)] | |
) | |
) | |
def rag_model(query): | |
# Your RAG model code here | |
result = qa({'query': query}) | |
relevant_docs = retriever.get_relevant_documents(query) | |
print_documents(relevant_docs) | |
# Extract the answer from the result | |
answer = result['result'] | |
# print(result) | |
# Append the query and answer to the chat history | |
chat_history.append(f'User: {query}\nAssistant: {answer}\n') | |
# Join the chat history into a string | |
chat_string = '\n'.join(chat_history) | |
return chat_string | |
# This is for Gradio interface | |
gradio_app = gr.Interface(fn=rag_model, inputs="text", outputs="text", title="RAGs to Riches", theme=gr.themes.Soft(), description="This is a RAG model that can answer queries based on the past reviews and course outlines of various courses offered at LUMS.") | |
if __name__ == "__main__": | |
gradio_app.launch() | |