course-rag / app.py
Jawachan's picture
Adding code to extract the course reviews
b507438 verified
from langchain_community.document_loaders import DirectoryLoader, PyPDFLoader, Docx2txtLoader
from pathlib import Path
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Chroma
from itertools import combinations
import numpy as np
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFaceEndpoint
import gradio as gr
import os
import zipfile
from dotenv import load_dotenv
# from llama.api import HuggingFaceEndpoint
load_dotenv()
LOCAL_VECTOR_STORE_DIR = Path('./data')
def langchain_document_loader(TMP_DIR):
"""
Load documents from the temporary directory (TMP_DIR).
Files can be in txt, pdf, CSV or docx format.
"""
documents = []
# txt_loader = DirectoryLoader(
# TMP_DIR.as_posix(), glob="**/*.txt", loader_cls=TextLoader, show_progress=True
# )
# documents.extend(txt_loader.load())
pdf_loader = DirectoryLoader(
TMP_DIR.as_posix(), glob="**/*.pdf", loader_cls=PyPDFLoader, show_progress=True
)
documents.extend(pdf_loader.load())
# csv_loader = DirectoryLoader(
# TMP_DIR.as_posix(), glob="**/*.csv", loader_cls=CSVLoader, show_progress=True,
# loader_kwargs={"encoding":"utf8"}
# )
# documents.extend(csv_loader.load())
doc_loader = DirectoryLoader(
TMP_DIR.as_posix(),
glob="**/*.docx",
loader_cls=Docx2txtLoader,
show_progress=True,
)
documents.extend(doc_loader.load())
return documents
zip_file_path = 'course reviews.zip'
# Get the directory of the zip file
current_dir = os.getcwd()
print(current_dir)
# Extract the zip file in the same directory
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(current_dir)
directory_path = 'course reviews'
TMP_DIR = Path(directory_path)
documents = langchain_document_loader(TMP_DIR)
HUGGING_FACE_API_KEY = os.getenv("HUGGING_FACE_API_KEY") # Using our secret API key from the .env file
def select_embedding_model():
# embedding = OllamaEmbeddings(model='nomic-embed-text')
embedding = HuggingFaceInferenceAPIEmbeddings(
api_key=HUGGING_FACE_API_KEY,
model_name="sentence-transformers/all-MiniLM-L6-v2" #This is the embedding model
)
return embedding
embeddings = select_embedding_model() # Calling the function to select the model
def create_vectorstore(embeddings,documents,vectorstore_name):
"""Create a Chroma vector database."""
persist_directory = (LOCAL_VECTOR_STORE_DIR.as_posix() + "/" + vectorstore_name)
vector_store = Chroma.from_documents(
documents=documents,
embedding=embeddings,
persist_directory=persist_directory
)
return vector_store
create_vectorstores = True # change to True to create vectorstores
if create_vectorstores:
vector_store = create_vectorstore(embeddings,documents,"vector_store")
print("Vector store created")
print("")
vector_store = Chroma(persist_directory = LOCAL_VECTOR_STORE_DIR.as_posix() + "/vector_store",
embedding_function=embeddings)
print("vector_store:",vector_store._collection.count(),"chunks.")
def Vectorstore_backed_retriever(vectorstore,search_type="mmr",k=6,score_threshold=None):
"""create a vectorsore-backed retriever
Parameters:
search_type: Defines the type of search that the Retriever should perform.
Can be "similarity" (default), "mmr", or "similarity_score_threshold"
k: number of documents to return (Default: 4)
score_threshold: Minimum relevance threshold for similarity_score_threshold (default=None)
"""
search_kwargs={}
if k is not None:
search_kwargs['k'] = k
if score_threshold is not None:
search_kwargs['score_threshold'] = score_threshold
retriever = vectorstore.as_retriever(
search_type=search_type,
search_kwargs=search_kwargs
)
return retriever
# Similarity search
retriever = Vectorstore_backed_retriever(vector_store,search_type="similarity",k=4)
def instantiate_LLM(api_key,temperature=0.5,top_p=0.95,model_name=None):
"""Instantiate LLM in Langchain.
Parameters:
LLM_provider (str): the LLM provider; in ["OpenAI","Google","HuggingFace"]
model_name (str): in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview",
"gemini-pro", "mistralai/Mistral-7B-Instruct-v0.2"].
api_key (str): google_api_key or openai_api_key or huggingfacehub_api_token
temperature (float): Range: 0.0 - 1.0; default = 0.5
top_p (float): : Range: 0.0 - 1.0; default = 1.
"""
llm = HuggingFaceEndpoint(
# repo_id = "openai-community/gpt2-large",
# repo_id = "google/gemma-2b-it",
repo_id="mistralai/Mistral-7B-Instruct-v0.2", # working
# repo_id = "NexaAIDev/Octopus-v4",
# repo_id="Snowflake/snowflake-arctic-instruct",
# repo_id="apple/OpenELM-3B-Instruct", # erros: remote trust something
# repo_id="meta-llama/Meta-Llama-3-8B-Instruct", # Takes too long
# repo_id="mistralai/Mixtral-8x22B-Instruct-v0.1", # RAM insufficient
# repo_id=model_name,
huggingfacehub_api_token=api_key,
# model_kwargs={
# "temperature":temperature,
# "top_p": top_p,
# "do_sample": True,
# "max_new_tokens":1024
# },
# model_kwargs={stop: "Human:", "stop_sequence": "Human:"},
stop_sequences = ["Human:"],
temperature=temperature,
top_p=top_p,
do_sample=True,
max_new_tokens=1024,
trust_remote_code=True
)
return llm
# get the API key from .env file
llm = instantiate_LLM(api_key=HUGGING_FACE_API_KEY)
def create_memory():
"""Creates a ConversationSummaryBufferMemory for our model
Creates a ConversationBufferWindowMemory for our models."""
memory = ConversationBufferMemory(
memory_key="history",
input_key="question",
return_messages=True,
k=3
)
return memory
memory = create_memory()
memory.save_context(
{"question": "What can you do?"},
{"output": "I can answer queries based on the past reviews and course outlines of various courses offered at LUMS."}
)
context_qa = """
You are a professional chatbot assistant for helping students at LUMS regarding course selection.
Please follow the following rules:
1. Answer the question in your own words from the context given to you.
2. If you don't know the answer, don't try to make up an answer.
3. If you don't have a course's review or outline, just say that you do not know about this course.
4. If a user enters a course code (e.g. ECON100 or CS370), match it with reviews with that course code. If the user enters a course name (e.g. Introduction to Economics or Database Systems), match it with reviews with that course name.
5. If you do not have information of a course, do not make up a course or suggest courses from universities other than LUMS.
Context: {context}
You are having a converation with a student at LUMS.
Chat History: {history}
Human: {question}
Assistant:
"""
prompt = PromptTemplate(
input_variables=["history", "context", "question"],
template=context_qa
)
qa = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
verbose=False,
return_source_documents=False,
chain_type_kwargs={
"prompt": prompt,
"memory": memory
},
)
# Global list to store chat history
chat_history = []
def print_documents(docs,search_with_score=False):
"""helper function to print documents."""
if search_with_score:
# used for similarity_search_with_score
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + doc[0].page_content +"\n\nscore:"+str(round(doc[-1],3))+"\n"
for i, doc in enumerate(docs)]
)
)
else:
# used for similarity_search or max_marginal_relevance_search
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + doc.page_content
for i, doc in enumerate(docs)]
)
)
def rag_model(query):
# Your RAG model code here
result = qa({'query': query})
relevant_docs = retriever.get_relevant_documents(query)
print_documents(relevant_docs)
# Extract the answer from the result
answer = result['result']
# print(result)
# Append the query and answer to the chat history
chat_history.append(f'User: {query}\nAssistant: {answer}\n')
# Join the chat history into a string
chat_string = '\n'.join(chat_history)
return chat_string
# This is for Gradio interface
gradio_app = gr.Interface(fn=rag_model, inputs="text", outputs="text", title="RAGs to Riches", theme=gr.themes.Soft(), description="This is a RAG model that can answer queries based on the past reviews and course outlines of various courses offered at LUMS.")
if __name__ == "__main__":
gradio_app.launch()