chrisli124's picture
convert geojson polygons to points
03ea002
# app.py
from shiny import App, ui, reactive, render
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import rasterio
from rasterio.plot import show
import geopandas as gpd
from ipyleaflet import Map, TileLayer, basemaps, ColorMap, RasterLayer, LegendControl, GeoJSON, MarkerCluster, Marker, DivIcon, Polygon
from shinywidgets import output_widget, register_widget
import plotnine as p9
import matplotlib.cm as cm
import matplotlib.colors as colors
import os
import base64
import tempfile
import json
from datetime import datetime
from helpers.fetch_data import fetch_data
from helpers.residuals import get_residual_plot
from helpers.reduce_precision import reduce_coordinate_precision
from shapely import LineString, Polygon
from matplotlib.colors import BoundaryNorm
import io
# ------------------------------
# 1. Data & Config
# ------------------------------
# Define time periods corresponding to each band in the GeoTIFF
time_periods = ["1990–1992", "1993–1995", "1996–1998", "1999–2001", "2002–2004",
"2005–2007", "2008–2010", "2011–2013", "2014–2016", "2017–2019"]
# Load GeoTIFF data (multi-band)
wealth_stack = rasterio.open("wealth_map.tif")
#load country data
with open('data/no_somaliland.geojson') as a:
country_json = json.load(a)
#load IWI by country
IWI_df = pd.read_csv('data/mean_IWI_by_country.csv')
#load residual data
residual_data = pd.read_csv('data/residual_by_country.csv')
selected_map = reactive.Value(None)
#load band 1 data by default
with open('data/simplified_band_1.geojson') as w:
band_1_data = json.load(w)
band_1_data = reduce_coordinate_precision(band_1_data, precision=5) #reduce precision to aid in rendering
IWI_values = [feature['properties']['IWI']
for feature in band_1_data['features']]
# Define IWI value bins and their corresponding color ranges
iwi_bins = [0.052, 0.140, 0.161, 0.187, 0.240, 0.696] # Custom bin values
iwi_labels = [
"0.052 – 0.140",
"0.140 – 0.161",
"0.161 – 0.187",
"0.187 – 0.240",
"0.240 – 0.696"
]
iwi_mappings = {
"0.052 – 0.140": "#0d0887",
"0.140 – 0.161": "#7d03a8",
"0.161 – 0.187": "#cb4679",
"0.187 – 0.240": "#f89441",
"0.240 – 0.696": "#f0f921"
}
# Generate a colormap and norm based on the custom bins
colormap = cm.get_cmap("plasma") # Choose your colormap
norm = BoundaryNorm(iwi_bins, colormap.N)
# Function to get color based on IWI value
def get_color(iwi):
# Find the color for the given IWI value based on the colormap and norm
rgba = colormap(norm(iwi)) # Convert to RGBA
return colors.to_hex(rgba) # Convert to HEX
# Function to clean up out-of-range values and get values
def get_clean_values(src, band_idx=1):
band_data = src.read(band_idx)
# Replace out-of-range values with NaN
band_data[(band_data <= 0) | (band_data > 1)] = np.nan
return band_data
# Get all values across all bands for quantiles
all_vals = []
for i in range(1, wealth_stack.count + 1):
vals = get_clean_values(wealth_stack, i).flatten()
all_vals.extend(vals[~np.isnan(vals)])
all_vals = np.array(all_vals)
q_breaks_legend = np.quantile(all_vals, np.linspace(0, 1, 6))
q_breaks = np.quantile(all_vals, np.linspace(0, 1, 11))
# Get raster bounds for proper positioning on the map
bounds = [[wealth_stack.bounds.bottom, wealth_stack.bounds.left],
[wealth_stack.bounds.top, wealth_stack.bounds.right]]
# Load improvement data (change in IWI by state/province)
# In real app, adjust path
improvement_data = pd.read_csv("data/poverty_improvement_by_state.csv")
# Pre-calculate the mean IWI for each band (for the "Trends Over Time" chart)
band_means = []
for i in range(1, wealth_stack.count + 1):
vals = get_clean_values(wealth_stack, i).flatten()
band_means.append(np.nanmean(vals))
# ------------------------------
# 2. UI
# ------------------------------
# Custom CSS for OCR A Std font and other styling
css = """
@import url('https://fonts.cdnfonts.com/css/ocr-a-std');
body {
font-family: 'OCR A Std', monospace !important;
}
.slider-animate-button {
background-color: #ffffff !important;
color: #000000 !important;
border: 2px solid #000000 !important;
border-radius: 5px !important;
padding: 5px 10px !important;
top: 10px !important;
}
.value-box {
margin-bottom: 15px;
padding: 15px;
border-radius: 5px;
color: white;
}
.green-box {
background-color: #00a65a;
}
.blue-box {
background-color: #0073b7;
}
.red-box {
background-color: #dd4b39;
}
.share-button {
display: inline-flex;
align-items: center;
justify-content: center;
gap: 8px;
padding: 5px 10px;
font-size: 16px;
font-weight: normal;
color: #000;
background-color: #fff;
border: 1px solid #ddd;
border-radius: 6px;
cursor: pointer;
box-shadow: 0 1.5px 0 #000;
}
.title-text {
font-family: 'OCR A Std', monospace;
font-size: 18px;
}
.subtitle-text {
font-family: 'OCR A Std', monospace;
font-size: 14px;
}
#improvement_table .shiny-data-grid {
width: 100% !important;
}
.nav-link {
color: white !important;
}
"""
# Share button HTML
share_button_html = """
<button id="share-button" class="share-button">
<svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor"
stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
<circle cx="18" cy="5" r="3"></circle>
<circle cx="6" cy="12" r="3"></circle>
<circle cx="18" cy="19" r="3"></circle>
<line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line>
<line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line>
</svg>
<strong>Share</strong>
</button>
<script>
(function() {
const shareBtn = document.getElementById('share-button');
// Reusable helper function to show a small "Copied!" message
function showCopyNotification() {
const notification = document.createElement('div');
notification.innerText = 'Copied to clipboard';
notification.style.position = 'fixed';
notification.style.bottom = '20px';
notification.style.right = '20px';
notification.style.backgroundColor = 'rgba(0, 0, 0, 0.8)';
notification.style.color = '#fff';
notification.style.padding = '8px 12px';
notification.style.borderRadius = '4px';
notification.style.zIndex = '9999';
document.body.appendChild(notification);
setTimeout(() => { notification.remove(); }, 2000);
}
shareBtn.addEventListener('click', function() {
const currentURL = window.location.href;
const pageTitle = document.title || 'Check this out!';
// If browser supports Web Share API
if (navigator.share) {
navigator.share({
title: pageTitle,
text: '',
url: currentURL
})
.catch((error) => {
console.log('Sharing failed', error);
});
} else {
// Fallback: Copy URL
if (navigator.clipboard && navigator.clipboard.writeText) {
navigator.clipboard.writeText(currentURL).then(() => {
showCopyNotification();
}, (err) => {
console.error('Could not copy text: ', err);
});
} else {
// Double fallback for older browsers
const textArea = document.createElement('textarea');
textArea.value = currentURL;
document.body.appendChild(textArea);
textArea.select();
try {
document.execCommand('copy');
showCopyNotification();
} catch (err) {
alert('Please copy this link:\\n' + currentURL);
}
document.body.removeChild(textArea);
}
}
});
})();
</script>
"""
# Create the app UI with dashboard layout
app_ui = ui.page_fluid(
ui.head_content(
ui.tags.style(css)
),
ui.page_navbar(
ui.nav_panel("Wealth Map",
ui.layout_sidebar(
ui.sidebar(
ui.h4("Map Controls"),
ui.input_switch(
"SelectedMap", "Enable Country View", False),
ui.input_slider(
"time_index",
"Select Time Period (Years):",
min=1,
max=len(time_periods),
value=1,
step=1,
animate=True
),
ui.strong("Currently Selected: "),
ui.output_text("current_year_range", inline=True),
ui.input_select(
"color_palette",
"Select Color Palette:",
{
"blue": "blue",
"red": "red",
"orange": "orange",
"purple": "purple",
"Spectral": "Spectral (Brewer)"
},
selected="red"
),
ui.input_slider(
"opacity",
"Map Opacity:",
min=0.2,
max=1,
value=0.8,
step=0.1
),
ui.accordion(ui.accordion_panel(
'How it works', ui.HTML("<p>These wealth-index predictions are AI-generated by a"
"sequence-aware neural network trained on 30 years of <em>Demographic and Health Surveys (DHS)</em> ground-truth data.</p"
"<ul><li>πŸ” 57,100+ geo-referenced survey points from DHS</li> <li>βš™οΈ Multi-spectral satellite bands & raster-to-vector feature extraction</li><li>🎯 Calibrated & validated with held-out DHS clusters (1990–2019)</li></ul>")
), id="map_instructions", open=False, multiple=False),
ui.HTML(share_button_html)
),
ui.layout_column_wrap(
ui.value_box(
"Highest IWI",
ui.output_text("highest_iwi"),
showcase=ui.tags.i(class_="fa fa-arrow-up"),
theme="success"
),
ui.value_box(
"Lowest IWI",
ui.output_text("lowest_iwi"),
showcase=ui.tags.i(class_="fa fa-arrow-down"),
theme="danger"
),
ui.value_box(
"Average IWI",
ui.output_text("avg_iwi"),
showcase=ui.tags.i(
class_="fa fa-balance-scale"),
theme="primary"
),
width=1/3
),
ui.layout_column_wrap(
ui.card(
ui.card_header(
ui.h3("Wealth Map of Africa", class_="title-text")),
output_widget("country_map"),
ui.p(
"Click anywhere on the map to view the time-series of IWI for that specific location (shown below).")
),
ui.card(
ui.card_header(
ui.h3("Time Series at Clicked Location", class_="subtitle-text")),
ui.output_plot("clicked_ts_plot"),
ui.p(
"Click on the map to see the full IWI time-series (1990–2019) for that location."),
ui.download_button(
"download_country_data", "Download CSV", icon="download"),
)
),
ui.card(
ui.card_header(ui.h3(
"Ground Truth vs. Prediction Residual Distribution (Selected Country)", class_="subtitle-text")),
ui.output_plot("iwi_residuals"),
ui.p(
"This chart shows the distribution of residuals between ground truth and predicted IWI values based on the selected country."),
ui.strong(
"Note: wealth estimates for areas without human settlements have been excluded from the analysis."),
ui.HTML(
"<a href='https://doi.org/10.24963/ijcai.2023/684' target='_blank'>[Paper PDF]</a>")
)
)
),
ui.nav_panel("Improvement Data",
ui.layout_columns(
ui.card(
ui.card_header(
ui.h3("Poverty Improvement by State", class_="title-text")),
ui.p("This table shows the estimated improvement in mean IWI between 1990–1992 and 2017–2019 for each province in Africa. "
"The 'Improvement' column indicates the change in IWI over this period. You can sort or filter the table, "
"and use the download button to export the data."),
ui.download_button(
"download_data", "Download CSV", icon="download"),
ui.card(ui.output_data_frame(
"improvement_table")),
)
)
),
ui.nav_panel("Trends Over Time",
ui.card(
ui.card_header(
ui.h3("Average Wealth Index Across Africa Over Time", class_="title-text")),
ui.p("This chart aggregates the mean IWI across all of Africa in each of the ten time periods. "
"It provides a high-level view of how wealth (as measured by IWI) has changed over time."),
ui.output_plot("trend_plot")
)
),
title=ui.HTML(
"<span style='font-weight: 600; font-size: 16px;'>"
"<a href='http://aidevlab.org' target='_blank' "
"style='font-family: \"OCR A Std\", monospace; color: white; text-decoration: underline;'>"
"aidevlab.org</a></span>"
),
id="tabs",
bg="#337ab7"
),
)
# ------------------------------
# 3. Server logic
# ------------------------------
def server(input, output, session):
# Initialize the map widget
m = Map(center=(0, 20), zoom=3)
for feature in band_1_data["features"]:
iwi = feature["properties"]["IWI"]
feature["properties"]["style"] = {
"color": get_color(iwi),
"fillColor": get_color(iwi), # Fill color based on IWI
"fillOpacity": 0.7,
"weight": 1
}
band_1_json = GeoJSON(data=band_1_data,
style={'radius': 0.05, 'opacity': 0.8, 'weight': 0.5},
point_style={'radius': 0.05},
name='Release'
)
legend = LegendControl(iwi_mappings,
position="bottomleft",
title="IWI Values",
)
# Add the legend to the map
m.add_control(legend)
m.add_layer(band_1_json)
geo_json = GeoJSON(
data=country_json,
style={
'opacity': 1, 'dashArray': '9', 'fillOpacity': 0.1, 'weight': 1
},
hover_style={
'color': 'white', 'dashArray': '0', 'fillOpacity': 0.5
}
)
# Register the map widget with Shiny
map_widget = register_widget("country_map", m)
# Store clicked point values
clicked_point_vals = reactive.Value(None)
selected_country = reactive.Value(None)
admin_layer = reactive.Value(None)
selected_admin = reactive.Value(None)
# Get the currently selected raster layer
@reactive.Calc
def selected_raster():
band_idx = input.time_index()
return get_clean_values(wealth_stack, band_idx)
# Display selected time period
@output
@render.text
def current_year_range():
# Adjust for 0-based indexing
return time_periods[input.time_index() - 1]
# Create a Country layer for the map
@reactive.effect
# @reactive.event(input.time_index, input.color_palette, input.opacity)
def _():
if input.SelectedMap() == True:
m.remove_layer(band_1_json)
m.add_layer(geo_json)
return m
elif input.SelectedMap() == False:
for layer in m.layers:
if layer == geo_json:
m.remove_layer(layer)
m.add_layer(band_1_json)
# Handle map clicks
@reactive.effect
def _():
# Set up click event handler
def handle_map_click(event=None, feature=None, **kwargs):
# extract feature coordinates
coords = feature['geometry']['coordinates'][0]
latitudes = [coords[x][1] for x in range(len(coords))]
longitudes = [coords[y][0] for y in range(len(coords))]
# find country name
country_name = feature['properties']['sovereignt']
# find country abbreviation
country_abbrev = feature['properties']['sov_a3']
selected_country.set(country_name) # set the country name
# lock view position to the country's centroid
centroid = (np.mean(latitudes), np.mean(longitudes))
m.center = centroid
m.zoom = 5
# Register click handler
geo_json.on_click(handle_map_click)
# Display value boxes
@output
@render.text
def highest_iwi():
raster_data = selected_raster()
return f"{np.nanmax(raster_data):.3f}"
@output
@render.text
def lowest_iwi():
raster_data = selected_raster()
return f"{np.nanmin(raster_data):.3f}"
@output
@render.text
def avg_iwi():
raster_data = selected_raster()
return f"{np.nanmean(raster_data):.3f}"
# Generate trend plot for mean IWI across Africa
@output
@render.plot
def trend_plot():
fig, ax = plt.subplots(figsize=(10, 4))
ax.plot(range(len(time_periods)), band_means, marker='o',
color="darkorange", linewidth=2, markersize=6)
ax.set_xticks(range(len(time_periods)))
ax.set_xticklabels(time_periods, rotation=45, ha="right")
ax.set_ylabel("Mean IWI")
ax.set_ylim(0.1, 0.3)
ax.set_title("Average IWI Over Time (Africa)")
ax.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
return fig
# Generate histogram plot
@output
@render.plot
def iwi_residuals():
country_name = selected_country.get()
fig = get_residual_plot(country_name, residual_data)
return fig
# Plot time series at clicked location
@output
@render.plot
def clicked_ts_plot():
country_name = selected_country.get()
fig, ax = plt.subplots(figsize=(10, 4))
if country_name is None:
ax.text(0.5, 0.5, "Click on the map to see the IWI time-series here.",
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14)
else:
ax.plot(IWI_df['Band_Number'], IWI_df[country_name],
marker='o', color="darkorange", linewidth=2, markersize=6)
ax.set_xticks(range(1, len(IWI_df['Band_Number'])+1))
ax.set_xticklabels(time_periods, rotation=45)
ax.set_ylabel("IWI (0 to 1)")
ax.set_ylim(0, 1)
ax.set_title(f"Time Series of IWI in {country_name}")
ax.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
return fig
# Display improvement data table
@output
@render.data_frame
def improvement_table():
return render.DataGrid(
improvement_data,
filters=True,
height="800px"
)
# Download CSV handler
@output
@render.download(filename=lambda: f"poverty_improvement_{datetime.now().strftime('%Y-%m-%d')}.csv")
def download_data():
return improvement_data.to_csv(index=False)
@output
@render.download(filename=lambda: f"{selected_country.get()}_IWI.csv")
async def download_country_data():
country_name = selected_country.get()
buf = io.StringIO()
country_data = pd.DataFrame(IWI_df[country_name])
country_data.to_csv(buf, index=False)
yield buf.getvalue()
# ------------------------------
# 4. Create and run the app
# ------------------------------
app = App(app_ui, server)