File size: 1,989 Bytes
f0a5521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from fastapi import FastAPI, HTTPException
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

app = FastAPI()

# Load model once at startup
@app.on_event("startup")
async def load_model():
    try:
        # Configuration
        model_name = "unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit"
        adapter_name = "LAWSA07/medical_fine_tuned_deepseekR1"
        
        # Load base model with 4-bit quantization
        app.state.base_model = AutoModelForCausalLM.from_pretrained(
            model_name,
            load_in_4bit=True,
            torch_dtype=torch.float16,
            device_map="auto",
            trust_remote_code=True,
        )
        
        # Attach PEFT adapter
        app.state.model = PeftModel.from_pretrained(
            app.state.base_model,
            adapter_name,
            adapter_weight_name="adapter_model.safetensors"
        )
        
        # Load tokenizer
        app.state.tokenizer = AutoTokenizer.from_pretrained(model_name)
        
    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=f"Model loading failed: {str(e)}"
        )

@app.get("/")
def health_check():
    return {"status": "OK"}

@app.post("/generate")
async def generate_text(prompt: str, max_length: int = 200):
    try:
        inputs = app.state.tokenizer(
            prompt,
            return_tensors="pt",
            padding=True
        ).to("cuda")
        
        outputs = app.state.model.generate(
            **inputs,
            max_length=max_length,
            temperature=0.7,
            do_sample=True
        )
        
        decoded = app.state.tokenizer.decode(
            outputs[0], 
            skip_special_tokens=True
        )
        
        return {"response": decoded}
    
    except Exception as e:
        raise HTTPException(
            status_code=500,
            detail=f"Generation failed: {str(e)}"
        )