File size: 5,459 Bytes
ac500fb
 
 
 
 
 
4ccd91a
ac500fb
 
 
 
9a432d8
 
 
 
 
 
 
 
 
 
 
 
 
 
ac500fb
9a432d8
 
 
 
ac500fb
 
 
9a432d8
ac500fb
 
9a432d8
 
 
 
ac500fb
9a432d8
 
ac500fb
31b5bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
9a432d8
 
 
 
 
 
 
ac500fb
9a432d8
 
 
 
5efb8b6
9a432d8
ac500fb
5efb8b6
ac500fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import json
import os
import numpy as np
import pandas as pd

from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn, AREA_DEFINITIONS, AREA_AVG_COLUMN_MAP, fields, PLUE_GROUP_AREAS
from src.leaderboard.read_evals import get_raw_eval_results
from src.about import Tasks


def get_leaderboard_df(results_path: str = None, requests_path: str = None, cols: list = None, initial_df: pd.DataFrame = None) -> pd.DataFrame:
    """Creates a dataframe from all the individual experiment results or uses a provided initial DataFrame."""
    
    if initial_df is not None:
        df = initial_df.copy() # Use a cópia do DataFrame inicial
        print("Usando DataFrame inicial fornecido.")
    elif results_path and requests_path:
        print(f"Lendo resultados de: {results_path}")
        raw_data = get_raw_eval_results(results_path, requests_path)
        all_data_json = [v.to_dict() for v in raw_data]
        df = pd.DataFrame.from_records(all_data_json)
    else:
        print("Erro: Nenhum DataFrame inicial nem caminhos de resultados fornecidos.")
        return pd.DataFrame() # Retorna DataFrame vazio se não houver dados

    # Garantir que colunas de tasks existem antes de calcular médias
    # (Opcional: Adicionar lógica para lidar com DFs que já têm médias calculadas)
    tasks_in_df = [task.name for task in Tasks if task.name in df.columns]
    print(f"Tasks encontrados no DataFrame: {tasks_in_df}")

    # Calcular médias por área
    for area_name, tasks_in_area in AREA_DEFINITIONS.items():
        # Usar task.name que é a chave interna/coluna no df
        area_cols = [task.name for task in tasks_in_area if task.name in df.columns]
        avg_col_name = AREA_AVG_COLUMN_MAP[area_name]
        if area_cols:
            # Lidar com possíveis NaNs nas colunas antes de calcular a média
            df[avg_col_name] = df[area_cols].mean(axis=1, skipna=True)
            print(f"Calculada média para {area_name} usando colunas: {area_cols}")
        else:
            df[avg_col_name] = np.nan
            print(f"Nenhuma coluna encontrada para {area_name}, definindo média como NaN.")
    
    # Calcular Média PLUE
    plue_avg_cols_to_consider = [
        AREA_AVG_COLUMN_MAP[area] 
        for area in PLUE_GROUP_AREAS 
        if area in AREA_AVG_COLUMN_MAP and AREA_AVG_COLUMN_MAP[area] in df.columns
    ]
    if plue_avg_cols_to_consider:
        df[AutoEvalColumn.plue_avg.name] = df[plue_avg_cols_to_consider].mean(axis=1, skipna=True)
        print(f"Calculada Média PLUE usando colunas: {plue_avg_cols_to_consider}")
    else:
        df[AutoEvalColumn.plue_avg.name] = np.nan
        print("Nenhuma coluna de média de área PLUE encontrada, definindo Média PLUE como NaN.")

    # Calcular Média Geral (baseada nas médias de TODAS as áreas)
    avg_area_cols = [col for col in AREA_AVG_COLUMN_MAP.values() if col in df.columns]
    if avg_area_cols:
        df[AutoEvalColumn.average.name] = df[avg_area_cols].mean(axis=1, skipna=True)
        print(f"Calculada Média Geral usando colunas: {avg_area_cols}")
    else: 
        df[AutoEvalColumn.average.name] = np.nan
        print("Nenhuma coluna de média de área encontrada, definindo Média Geral como NaN.")

    # Ordenar pela Média Geral
    if AutoEvalColumn.average.name in df.columns:
      df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    
    # Apenas arredondar os valores numéricos existentes
    df = df.round(decimals=2)

    print(f"Colunas retornadas por get_leaderboard_df: {df.columns.tolist()}") # Adicionar log
    return df


def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
    """Creates the different dataframes for the evaluation queues requestes"""
    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
            data[EvalQueueColumn.revision.name] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)

                data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
                data[EvalQueueColumn.revision.name] = data.get("revision", "main")
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
    return df_finished[cols], df_running[cols], df_pending[cols]