Spaces:
Running
Running
| import os | |
| import base64 | |
| import numpy as np | |
| from PIL import Image | |
| import io | |
| import requests | |
| import replicate | |
| from flask import Flask, request | |
| import gradio as gr | |
| from openai import OpenAI | |
| from dotenv import load_dotenv, find_dotenv | |
| # Locate the .env file | |
| dotenv_path = find_dotenv() | |
| load_dotenv(dotenv_path) | |
| OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
| REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN') | |
| client = OpenAI() | |
| def call_openai(pil_image): | |
| # Save the PIL image to a bytes buffer | |
| buffered = io.BytesIO() | |
| pil_image.save(buffered, format="JPEG") | |
| # Encode the image to base64 | |
| image_data = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
| response = client.chat.completions.create( | |
| model="gpt-4o", | |
| messages=[ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": "You are a product designer. I've attached a moodboard here. In one sentence, what do all of these elements have in common? Answer from a design language perspective, if you were telling another designer to create something similar, including any repeating colors and materials and shapes and textures"}, | |
| { | |
| "type": "image_url", | |
| "image_url": { | |
| "url": "data:image/jpeg;base64," + image_data, | |
| }, | |
| }, | |
| ], | |
| } | |
| ], | |
| max_tokens=300, | |
| ) | |
| return response.choices[0].message.content | |
| def image_classifier(moodboard, prompt): | |
| # Convert the numpy array to a PIL image | |
| pil_image = Image.fromarray(moodboard.astype('uint8')) | |
| openai_response = call_openai(pil_image) | |
| openai_response = openai_response.replace('moodboard', '') | |
| # Call Stable Diffusion API with the response from OpenAI | |
| input = { | |
| "width": 768, | |
| "height": 768, | |
| "prompt": "high quality render of " + prompt + ", " + openai_response[20:], | |
| "negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch", | |
| "refine": "expert_ensemble_refiner", | |
| "apply_watermark": False, | |
| "num_inference_steps": 25, | |
| "num_outputs": 3 | |
| } | |
| output = replicate.run( | |
| "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", | |
| input=input | |
| ) | |
| # Download the image from the URL | |
| image_url = output[0] | |
| print(image_url) | |
| response = requests.get(image_url) | |
| print(response) | |
| img1 = Image.open(io.BytesIO(response.content)) | |
| image_url = output[1] | |
| print(image_url) | |
| response = requests.get(image_url) | |
| print(response) | |
| img2 = Image.open(io.BytesIO(response.content)) | |
| image_url = output[2] | |
| print(image_url) | |
| response = requests.get(image_url) | |
| print(response) | |
| img3 = Image.open(io.BytesIO(response.content)) | |
| return [img1, img2, img3] # Return the image object | |
| # app = Flask(__name__) | |
| # os.environ.get("REPLICATE_API_TOKEN") | |
| # @app.route("/") | |
| # def index(): | |
| demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image"]) | |
| demo.launch(share=True) |