Spaces:
Sleeping
Sleeping
# Custom ViT from T5 | |
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py | |
from transformers.models.t5.modeling_t5 import ( | |
T5Model, | |
T5Config, | |
T5Stack, | |
T5PreTrainedModel, | |
T5Block, | |
T5LayerNorm, | |
T5LayerFF, | |
T5LayerSelfAttention, | |
T5Attention, | |
T5LayerCrossAttention, | |
) | |
from transformers.modeling_outputs import ( | |
CausalLMOutputWithPast, | |
BaseModelOutputWithPastAndCrossAttentions, | |
SequenceClassifierOutputWithPast, | |
TokenClassifierOutput, | |
) | |
import math | |
import torch | |
from torch import nn | |
from torch.nn.parameter import Parameter | |
import torch.nn.functional as F | |
#encoder related code starts here | |
# Unified Vision Transformer Embedding class | |
class VisionTransformerEmbedding(nn.Module): | |
def __init__(self, embed_dim, config): | |
super(VisionTransformerEmbedding, self).__init__() | |
self.config = config | |
self.embed_dim = embed_dim | |
# Learnable scaling factors for the learnable normalization option | |
if self.config.PE_mix_strategy in ['learnable_scaling_vec', 'weighted_sum_vec', 'weighted_sum_no_norm_vec']: | |
self.position_scale = nn.Parameter(torch.ones(1, embed_dim)) | |
self.input_weight = nn.Parameter(torch.ones(1,embed_dim)) | |
self.position_weight = nn.Parameter(torch.ones(1,embed_dim)) | |
if self.config.PE_mix_strategy in ['learnable_scaling', 'weighted_sum', 'weighted_sum_no_norm']: | |
self.position_scale = nn.Parameter(torch.ones(1)) | |
self.input_weight = nn.Parameter(torch.ones(1)) | |
self.position_weight = nn.Parameter(torch.ones(1)) | |
# Positional attention mechanism for the positional attention option | |
if self.config.PE_mix_strategy == 'positional_attention': | |
self.attention = nn.MultiheadAttention(embed_dim, num_heads=8) | |
# Layer normalization for the layer normalization option | |
if self.config.PE_mix_strategy == 'layer_norm': | |
self.layer_norm = nn.LayerNorm(embed_dim) | |
def forward(self, inputs_embeds, position_embeds): | |
strategy = self.config.PE_mix_strategy | |
if strategy == 'hardcoded_normalization': | |
inputs_embeds_norm = F.normalize(inputs_embeds, p=2, dim=-1) | |
position_embeds_norm = F.normalize(position_embeds, p=2, dim=-1) | |
output_embeds = inputs_embeds_norm + position_embeds_norm | |
elif strategy in ['learnable_scaling','learnable_scaling_vec']: | |
scaled_position_embeds = self.position_scale * position_embeds | |
output_embeds = inputs_embeds + scaled_position_embeds | |
elif strategy in ['weighted_sum','weighted_sum_vec']: | |
inputs_embeds_norm = F.normalize(inputs_embeds, p=2, dim=-1) | |
position_embeds_norm = F.normalize(position_embeds, p=2, dim=-1) | |
output_embeds = (self.input_weight * inputs_embeds_norm) + (self.position_weight * position_embeds_norm) | |
elif strategy in ['weighted_sum_no_norm','weighted_sum_no_norm_vec']: | |
# Directly apply the weights without normalization | |
output_embeds = (self.input_weight * inputs_embeds) + (self.position_weight * position_embeds) | |
elif strategy == 'positional_attention': | |
# Expanding position_embeds to match the batch size of inputs_embeds | |
position_embeds_expanded = position_embeds.expand(inputs_embeds.shape[0], -1, -1) | |
# Ensure the inputs are in the correct shape for MultiheadAttention (3D: [seq_len, batch_size, embed_dim]) | |
inputs_embeds_reshaped = inputs_embeds.transpose(0, 1) # [batch_size, seq_len, embed_dim] -> [seq_len, batch_size, embed_dim] | |
position_embeds_reshaped = position_embeds_expanded.transpose(0, 1) # [batch_size, seq_len, embed_dim] -> [seq_len, batch_size, embed_dim] | |
attn_output, _ = self.attention(inputs_embeds_reshaped, position_embeds_reshaped, position_embeds_reshaped) | |
output_embeds = inputs_embeds_reshaped + attn_output | |
# Transpose back to original shape | |
output_embeds = output_embeds.transpose(0, 1) # [seq_len, batch_size, embed_dim] -> [batch_size, seq_len, embed_dim] | |
elif strategy == 'layer_norm': | |
combined_embeds = inputs_embeds + position_embeds | |
# Default comes with Learnable Scaling and Shifting | |
output_embeds = self.layer_norm(combined_embeds) | |
elif strategy == 'default': | |
output_embeds = inputs_embeds + position_embeds | |
else: | |
raise ValueError(f"Unsupported PE_mix_strategy: {strategy}") | |
return output_embeds | |
# https://github.com/McGill-NLP/length-generalization/blob/main/src/models/custom_t5_decoder_only.py | |
class PositionalEmbedding(nn.Module): | |
def __init__(self, demb): | |
super().__init__() | |
self.demb = demb | |
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) | |
self.register_buffer("inv_freq", inv_freq) | |
def forward(self, pos_seq, bsz=None): | |
sinusoid_inp = torch.ger(pos_seq, self.inv_freq) | |
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) | |
if bsz is not None: | |
return pos_emb[None, :, :].expand(bsz, -1, -1) | |
else: | |
return pos_emb[None, :, :] | |
class FixedAbsolutePositionalEmbedding(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
t = torch.arange(16384).type_as(inv_freq) | |
sinusoid_inp = torch.einsum("i , j -> i j", t, inv_freq) | |
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) | |
self.embed = nn.Embedding.from_pretrained(emb, freeze=True) | |
def forward(self, position_ids: torch.Tensor): | |
return self.embed(position_ids.long()) | |
class FixedRotaryPositionalEmbedding(nn.Module): | |
def __init__( | |
self, rotary_dim: int, rotary_base: int = 10000, max_position: int = 16384 | |
): | |
super().__init__() | |
# This is an inverse frequency tensor | |
# Each dimension has a higher denominator than the previous one | |
# So, the frequency will be lower for higher dimensions | |
inv_freq = 1.0 / ( | |
rotary_base ** (torch.arange(0, rotary_dim, 2).float() / rotary_dim) | |
) # [rotary_dim/2] | |
# Now, we create frequencies for each position | |
t = torch.arange(max_position, device=inv_freq.device, dtype=inv_freq.dtype) | |
freqs = torch.einsum("i,j->ij", t, inv_freq) # [max_position, rotary_dim/2] | |
sins = torch.sin(freqs) | |
coss = torch.cos(freqs) | |
emb = torch.cat([sins, coss], dim=-1) # [max_position, rotary_dim] | |
self.embed = nn.Embedding.from_pretrained(emb, freeze=True) | |
def forward(self, position_ids: torch.Tensor): | |
return self.embed(position_ids.long()) | |
def fixed_pos_embedding(x, seq_dim=1, seq_len=None): | |
dim = x.shape[-1] | |
if seq_len is None: | |
seq_len = x.shape[seq_dim] | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) | |
sinusoid_inp = ( | |
torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq) | |
.to(x.device) | |
.float() | |
) | |
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) | |
def rotate_every_two(x): | |
""" | |
Example: [a, b, c, d] -> [-b, a, -d, c] | |
""" | |
x1 = x[:, :, :, ::2] | |
x2 = x[:, :, :, 1::2] | |
x = torch.stack((-x2, x1), axis=-1) | |
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') | |
def apply_rotary_pos_emb(x, sincos, offset=0): | |
sin, cos = map( | |
lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave( | |
2, 3 | |
), | |
sincos, | |
) | |
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) | |
return (x * cos) + (rotate_every_two(x) * sin) | |
def apply_rotary_pos_emb_new(x, sincos, offset=0): | |
sin, cos = map( | |
lambda t: t[:, :, None, :].repeat_interleave(2, 3), | |
sincos, | |
) | |
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) | |
return (x * cos) + (rotate_every_two(x) * sin) | |
class CustomT5Attention(T5Attention): | |
def __init__(self, config: T5Config, has_relative_attention_bias=False, pos_enc_type="RPE", attn_type="self", rpe_type="abs"): | |
super().__init__(config) | |
#self.pos_enc_type = pos_enc_type | |
# Alibi-rpe_sbias | |
if "-" in pos_enc_type: | |
pos_enc_split = pos_enc_type.split("-") | |
self.pos_enc_type = pos_enc_split[0] | |
self.struct_attn_type = pos_enc_split[1] | |
else: | |
self.pos_enc_type = pos_enc_type | |
self.struct_attn_type = "" | |
self.d_head = config.d_kv | |
self.attn_type = attn_type | |
self.rpe_type = rpe_type | |
self.has_relative_attention_bias = has_relative_attention_bias | |
if self.pos_enc_type == "RoPE": | |
self.rotary_dim = None | |
if getattr(config, "rotary_dim", None) is not None: | |
self.rotary_dim = config.rotary_dim | |
self.rotary_dim = int(0.25 * self.d_head) | |
# Get the device from the configuration | |
#device = torch.device("cuda" if torch.cuda.is_available() and config.device == 'cuda' else "cpu") | |
if self.pos_enc_type != "RPE": | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
device = self.relative_attention_bias.weight.device | |
#print(f"has_relative_attention_bias:{has_relative_attention_bias}") | |
if self.has_relative_attention_bias: | |
if self.pos_enc_type == "RPE": | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
elif self.pos_enc_type in ["Alibi","APEAlibi"]: | |
#print(f"device:{device}") | |
if self.struct_attn_type == "duo": | |
self.slopes_l = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 | |
self.slopes_r = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 | |
elif self.struct_attn_type == "rpe_sbias": | |
self.slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 | |
self.struct_slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 | |
else: | |
self.slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1 | |
elif self.pos_enc_type == "KerpleLog": | |
self.eps = 1e-2 | |
self.bias_p = self.get_kerple_parameter(2, 'uniform',device) | |
self.bias_a = self.get_kerple_parameter(1, 'uniform',device) | |
elif self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]: | |
#self.relative_attention_bias = None # No positional encoding bias | |
pass | |
else: | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
# Add more types if necessary | |
# Allocate weights and initialize. | |
# The kernel has the form -p*log(1+a*|m-n|) | |
def get_kerple_parameter(self,scale, init_method, device): | |
if init_method == 'ones': | |
return Parameter(torch.ones( | |
self.n_heads, | |
device=device, | |
)[:,None,None]*scale ) | |
elif init_method == 'uniform': | |
return Parameter(torch.rand( | |
self.n_heads, | |
device=device, | |
)[:,None,None]*scale ) | |
# https://github.com/ofirpress/attention_with_linear_biases/issues/5 | |
def get_slopes(self, n): | |
def get_slopes_power_of_2(n): | |
start = (2**(-2**-(math.log2(n)-3))) | |
ratio = start | |
return [start*ratio**i for i in range(n)] | |
if math.log2(n).is_integer(): | |
return get_slopes_power_of_2(n) #In the paper, we only train models that have 2^a heads for some a. This function has | |
else: #some good properties that only occur when the input is a power of 2. To maintain that even | |
closest_power_of_2 = 2**math.floor(math.log2(n)) #when the number of heads is not a power of 2, we use this workaround. | |
return get_slopes_power_of_2(closest_power_of_2) + self.get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2] | |
def compute_struct_bias(self, query_length, key_length, device=None, relative_position=None): | |
"""Compute binned relative position bias""" | |
if device is None: | |
device = self.relative_attention_bias.weight.device | |
#print("#### Compute bias") | |
if self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]: | |
return torch.zeros((1, self.n_heads, query_length, key_length), device=device) | |
#elif self.pos_enc_type == "Alibi": | |
elif self.pos_enc_type in ["Alibi","APEAlibi"]: | |
if self.struct_attn_type == "duo": | |
if relative_position is None: | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
if self.rpe_type == "abs": | |
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) | |
else: | |
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) | |
self.slopes_l = self.slopes_l.to(device) | |
self.slopes_r = self.slopes_r.to(device) | |
alibi_left = self.slopes_l.unsqueeze(1).unsqueeze(1) * relative_position | |
alibi_right = self.slopes_r.unsqueeze(1).unsqueeze(1) * relative_position | |
values = torch.triu(alibi_right) + torch.tril(alibi_left) | |
values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length) | |
return values | |
else: | |
if relative_position is None: | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
#else: | |
#Simple case here, every tree has the same distance matrix | |
#relative_position = relative_position.repeat(1, self.n_heads, 1, 1) | |
if self.rpe_type == "abs": | |
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) | |
else: | |
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) | |
#print(f"relative_position.shape:{relative_position.shape}") | |
#print(f"relative_position:{relative_position}") | |
self.struct_slopes = self.struct_slopes.to(device) | |
values = self.struct_slopes.unsqueeze(1).unsqueeze(1) * relative_position | |
values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length) | |
return values | |
elif self.pos_enc_type == "KerpleLog": | |
if relative_position is None: | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
if self.rpe_type == "abs": | |
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) | |
else: | |
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) | |
self.bias_p.data = self.bias_p.data.clamp(min=self.eps) | |
self.bias_a.data = self.bias_a.data.clamp(min=self.eps) | |
self.bias_p = self.bias_p.to(device) | |
self.bias_a = self.bias_a.to(device) | |
values = -self.bias_p*torch.log(1+self.bias_a*relative_position) # log kernel # shape (num_heads, query_length, key_length) | |
values = values.unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
else: | |
#context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
#memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
#relative_position = memory_position - context_position # shape (query_length, key_length) | |
if relative_position is None: | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # shape (query_length, key_length) | |
bidirectional=(not self.is_decoder), | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
def compute_bias(self, query_length, key_length, device=None, relative_position=None): | |
"""Compute binned relative position bias""" | |
if device is None: | |
device = self.relative_attention_bias.weight.device | |
#print("query_length",query_length) | |
#print("key_length",key_length) | |
#print("#### Compute bias") | |
if self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]: | |
return torch.zeros((1, self.n_heads, query_length, key_length), device=device) | |
#elif self.pos_enc_type == "Alibi": | |
elif self.pos_enc_type in ["Alibi","APEAlibi"]: | |
if self.struct_attn_type == "duo": | |
relative_position = relative_position.to(device) | |
if self.rpe_type == "abs": | |
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) | |
else: | |
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) | |
self.slopes_l = self.slopes_l.to(device) | |
self.slopes_r = self.slopes_r.to(device) | |
alibi_left = self.slopes_l.unsqueeze(1).unsqueeze(1) * relative_position | |
alibi_right = self.slopes_r.unsqueeze(1).unsqueeze(1) * relative_position | |
values = torch.triu(alibi_right) + torch.tril(alibi_left) | |
# Slice the relevant part of the bias before reshaping | |
values = values[:, :query_length, :key_length] # Slicing the tensor before reshaping | |
values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length) | |
#print(f"values.shape:{values.shape}") | |
return values | |
else: | |
if relative_position is None: | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
#else: | |
#Simple case here, every tree has the same distance matrix | |
#relative_position = relative_position.repeat(1, self.n_heads, 1, 1) | |
if self.rpe_type == "abs": | |
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) | |
else: | |
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) | |
#print(f"relative_position.shape:{relative_position.shape}") | |
#print(f"relative_position:{relative_position}") | |
self.slopes = self.slopes.to(device) | |
values = self.slopes.unsqueeze(1).unsqueeze(1) * relative_position | |
values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length) | |
return values | |
elif self.pos_enc_type == "KerpleLog": | |
if relative_position is None: | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
if self.rpe_type == "abs": | |
relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1) | |
else: | |
relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1) | |
self.bias_p.data = self.bias_p.data.clamp(min=self.eps) | |
self.bias_a.data = self.bias_a.data.clamp(min=self.eps) | |
self.bias_p = self.bias_p.to(device) | |
self.bias_a = self.bias_a.to(device) | |
values = -self.bias_p*torch.log(1+self.bias_a*relative_position) # log kernel # shape (num_heads, query_length, key_length) | |
values = values.unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
else: | |
#context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
#memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
#relative_position = memory_position - context_position # shape (query_length, key_length) | |
if relative_position is None: | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # shape (query_length, key_length) | |
bidirectional=(not self.is_decoder), | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
def forward( | |
self, | |
hidden_states, | |
mask=None, | |
key_value_states=None, | |
position_bias=None, | |
past_key_value=None, | |
layer_head_mask=None, | |
query_length=None, | |
use_cache=False, | |
output_attentions=False, | |
relative_position=None, | |
struct_position_bias=None, | |
): | |
""" | |
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | |
""" | |
# Input is (batch_size, seq_length, dim) | |
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) | |
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) | |
batch_size, seq_length = hidden_states.shape[:2] | |
real_seq_length = seq_length | |
if past_key_value is not None: | |
if len(past_key_value) != 2: | |
raise ValueError( | |
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | |
) | |
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | |
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] | |
def shape(states): | |
"""projection""" | |
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | |
def unshape(states): | |
"""reshape""" | |
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | |
def project(hidden_states, proj_layer, key_value_states, past_key_value): | |
"""projects hidden states correctly to key/query states""" | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(hidden_states)) | |
elif past_key_value is None: | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(key_value_states)) | |
if past_key_value is not None: | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, key_length, dim_per_head) | |
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) | |
elif past_key_value.shape[2] != key_value_states.shape[1]: | |
# checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(key_value_states)) | |
else: | |
# cross-attn | |
hidden_states = past_key_value | |
return hidden_states | |
#print(f"\nattn_type:{self.attn_type}") | |
#print(f"hidden_states.shape:{hidden_states.shape}") | |
#if key_value_states is not None: | |
# print(f"key_value_states.shape:{key_value_states.shape}") | |
#if past_key_value is not None: | |
# print(f"past_key_value[0].shape:{past_key_value[0].shape}") | |
# get query states | |
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) | |
#print(f"query_states.shape (before RoPE): {query_states.shape}") # Check shape before RoPE | |
# get key/value states | |
if self.pos_enc_type == "RoPE": | |
#key_states = shape(self.k(hidden_states)) | |
#findme | |
key_states = project( | |
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None | |
) | |
#print(f"key_states2.shape (before RoPE): {key_states2.shape}") | |
else: | |
key_states = project( | |
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None | |
) | |
#print(f"key_states.shape (before RoPE): {key_states.shape}") | |
value_states = project( | |
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None | |
) | |
attention_output_dict = {} | |
#print(f"orig, key_states.shape:{key_states.shape}") | |
#print(f"orig, query_states.shape:{query_states.shape}") | |
#print(f"has_relative_attention_bias:{self.has_relative_attention_bias}") | |
#print(f"attn_type:{self.attn_type}") | |
#print(f"pos_enc_type:{self.pos_enc_type}") | |
#print(f"rpe_type:{self.rpe_type}") | |
if self.pos_enc_type == "RoPE": | |
r_seq_len = hidden_states.shape[1] | |
r_offset = 0 | |
if past_key_value is not None: | |
# This is considering seq2seq auto-regressive generation case, while the absolute position is offset by + input_len | |
# Can be turned off to test | |
#print(f"past_key_value[0].shape:{past_key_value[0].shape}") | |
r_offset = past_key_value[0].shape[2] | |
r_seq_len += r_offset | |
query_states = query_states.permute(0, 2, 1, 3) | |
key_states = key_states.permute(0, 2, 1, 3) | |
if self.rotary_dim is not None: | |
k_rot = key_states[:, :, :, : self.rotary_dim] | |
k_pass = key_states[:, :, :, self.rotary_dim :] | |
q_rot = query_states[:, :, :, : self.rotary_dim] | |
q_pass = query_states[:, :, :, self.rotary_dim :] | |
sincos = fixed_pos_embedding(k_rot, 1, seq_len=r_seq_len) | |
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=r_offset) | |
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=r_offset) | |
if output_attentions: | |
scores_pass = torch.matmul( | |
q_pass.permute(0, 2, 1, 3), | |
k_pass.permute(0, 2, 1, 3).transpose(3, 2), | |
) | |
attention_output_dict["scores_pass"] = scores_pass | |
scores_rot = torch.matmul( | |
q_rot.permute(0, 2, 1, 3), | |
k_rot.permute(0, 2, 1, 3).transpose(3, 2), | |
) | |
attention_output_dict["scores_rot"] = scores_rot | |
key_states = torch.cat([k_rot, k_pass], dim=-1) | |
query_states = torch.cat([q_rot, q_pass], dim=-1) | |
else: | |
sincos = fixed_pos_embedding(key_states, 1, seq_len=r_seq_len) | |
key_states = apply_rotary_pos_emb(key_states, sincos, offset=r_offset) | |
query_states = apply_rotary_pos_emb( | |
query_states, sincos, offset=r_offset | |
) | |
#print(f"inner,before_permute, key_states.shape:{key_states.shape}") | |
#print(f"inner,before_permute, query_states.shape:{query_states.shape}") | |
""" | |
inner,before_permute, key_states.shape:torch.Size([1, 2, 8, 64]) | |
inner,before_permute, query_states.shape:torch.Size([1, 1, 8, 64]) | |
""" | |
query_states = query_states.permute(0, 2, 1, 3) | |
key_states = key_states.permute(0, 2, 1, 3) | |
#Ignore this if it's already taken care of in project(hidden_states, proj_layer, key_value_states, past_key_value) | |
""" | |
if past_key_value is not None: | |
print(f"past_key_value[0].shape before concat: {past_key_value[0].shape}") | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
""" | |
#print(f"inner, key_states.shape:{key_states.shape}") | |
#print(f"inner, key_states.transpose(3, 2).shape:{key_states.transpose(3, 2).shape}") | |
#print(f"inner, query_states.shape:{query_states.shape}") | |
""" | |
# At decoder for 3rd token self-attn | |
attn_type:self | |
hidden_states.shape:torch.Size([1, 1, 128]) | |
query_states.shape (before RoPE): torch.Size([1, 8, 1, 64]) | |
key_states.shape (before RoPE): torch.Size([1, 8, 2, 64]) | |
orig, key_states.shape:torch.Size([1, 8, 2, 64]) | |
orig, query_states.shape:torch.Size([1, 8, 1, 64]) | |
inner, key_states.shape:torch.Size([1, 8, 3, 64]) <- this should be [1, 8, 2, 64] | |
inner, query_states.shape:torch.Size([1, 8, 1, 64]) | |
scores.shape:torch.Size([1, 8, 1, 3]) | |
mask.shape:torch.Size([1, 1, 1, 2]) | |
""" | |
scores = torch.matmul( | |
query_states, key_states.transpose(3, 2) | |
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
#print(f"scores.shape:{scores.shape}") | |
#scores.shape:torch.Size([480, 8, 64, 64]) | |
#mask.shape:torch.Size([480, 1, 1, 64]) | |
# At 1st layer cross attn | |
# scores.shape:torch.Size([1, 8, 1, 1])!!! for the first token it could be key_length=1 but why seq_length = 1 ?? | |
if mask is not None: | |
#print(f"mask.shape:{mask.shape}") | |
#scores += mask # (batch_size, n_heads, seq_length, key_length) | |
#scores = scores+mask # (batch_size, n_heads, seq_length, key_length) | |
expanded_mask = mask.expand_as(scores) # expand mask tensor to all heads | |
#print(f"expanded_mask.shape:{expanded_mask.shape}") | |
#print("mask",mask) | |
#print("expanded_mask",expanded_mask) | |
scores += expanded_mask | |
#print("scores",scores) | |
#print(f"scores.shape:{scores.shape}") | |
#RuntimeError: output with shape [512, 8, 1, 1] doesn't match the broadcast shape [512, 8, 1, 64] | |
else: | |
# compute scores | |
scores = torch.matmul( | |
query_states, key_states.transpose(3, 2) | |
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
#print(f"scores.shape:{scores.shape}") | |
#scores.shape:torch.Size([480, 8, 64, 64]) | |
#print(f"self.attn_type",self.attn_type) | |
if self.struct_attn_type == "rpe_sbias": | |
if struct_position_bias is None: | |
if not self.has_relative_attention_bias: | |
#print("not has_relative_attention_bias") | |
struct_position_bias = torch.zeros( | |
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype | |
) | |
if self.gradient_checkpointing and self.training: | |
struct_position_bias.requires_grad = True | |
else: | |
struct_position_bias = self.compute_struct_bias(real_seq_length, key_length, device=scores.device, relative_position=relative_position) | |
# if key and values are already calculated | |
# we want only the last query position bias | |
if past_key_value is not None: | |
struct_position_bias = struct_position_bias[:, :, -hidden_states.size(1) :, :] | |
#print("struct_position_bias.shape:", position_bias.shape) | |
#struct_position_bias.shape: torch.Size([1, 8, 64, 64]) | |
if mask is not None: | |
#print(f"mask.shape:{mask.shape}") | |
#mask.shape:torch.Size([480, 1, 1, 64]) | |
struct_position_bias = struct_position_bias + mask # (batch_size, n_heads, seq_length, key_length) | |
#print(f"position_bias.shape:{position_bias.shape}") | |
# torch.Size([480, 8, 64, 64]) | |
if self.pruned_heads: | |
mask = torch.ones(struct_position_bias.shape[1]) | |
mask[list(self.pruned_heads)] = 0 | |
struct_position_bias_masked = struct_position_bias[:, mask.bool()] | |
else: | |
struct_position_bias_masked = struct_position_bias | |
#print(f"struct_position_bias.shape:{struct_position_bias.shape}") | |
#print(f"struct_position_bias_masked.shape:{struct_position_bias_masked.shape}") | |
if position_bias is None: | |
if not self.has_relative_attention_bias: | |
#print("not has_relative_attention_bias") | |
position_bias = torch.zeros( | |
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype | |
) | |
if self.gradient_checkpointing and self.training: | |
position_bias.requires_grad = True | |
else: | |
if self.pos_enc_type in ["Alibi","APEAlibi"]: | |
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=relative_position) | |
else: | |
if self.struct_attn_type == "rpe_sbias": | |
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=None) | |
else: | |
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=None) | |
#print(f"position_bias1.shape:{position_bias.shape}") | |
# if key and values are already calculated | |
# we want only the last query position bias | |
if past_key_value is not None: | |
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] | |
#print(f"position_bias2.shape:{position_bias.shape}") | |
#print("position_bias.shape:", position_bias.shape) | |
#position_bias.shape: torch.Size([1, 8, 64, 64]) | |
if mask is not None: | |
#print(f"mask.shape:{mask.shape}") | |
#mask.shape:torch.Size([480, 1, 1, 64]) | |
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) | |
#print(f"masked position_bias.shape:{position_bias.shape}") | |
# torch.Size([480, 8, 64, 64]) | |
#print(f"position_bias3.shape:{position_bias.shape}") | |
if self.pruned_heads: | |
mask = torch.ones(position_bias.shape[1]) | |
mask[list(self.pruned_heads)] = 0 | |
position_bias_masked = position_bias[:, mask.bool()] | |
else: | |
position_bias_masked = position_bias | |
#print(f"position_bias.shape:{position_bias.shape}") | |
#print(f"position_bias_masked.shape:{position_bias_masked.shape}") | |
#print(f"scores.shape:{scores.shape}") | |
if self.struct_attn_type == "rpe_sbias" and self.attn_type == "self": | |
scores += position_bias_masked + struct_position_bias_masked | |
else: | |
scores += position_bias_masked | |
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( | |
scores | |
) # (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.dropout( | |
attn_weights, p=self.dropout, training=self.training | |
) # (batch_size, n_heads, seq_length, key_length) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) | |
attn_output = self.o(attn_output) | |
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None | |
""" | |
if self.struct_attn_type == "rpe_sbias": | |
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + (struct_position_bias,) | |
else: | |
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | |
""" | |
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + (struct_position_bias,) | |
if output_attentions: | |
outputs = outputs + (attn_weights,) | |
return outputs | |
from transformers.models.t5.modeling_t5 import T5LayerSelfAttention, T5LayerCrossAttention | |
import copy | |
class CustomT5LayerSelfAttention(T5LayerSelfAttention): | |
def __init__(self, config, has_relative_attention_bias=False, pos_enc_type="RPE", rpe_type="abs"): | |
super().__init__(config, has_relative_attention_bias) | |
self.pos_enc_type=pos_enc_type | |
self.rpe_type=rpe_type | |
self.SelfAttention = CustomT5Attention(config, has_relative_attention_bias=has_relative_attention_bias, pos_enc_type=pos_enc_type, attn_type="self", rpe_type=rpe_type) | |
self.is_decoder = config.is_decoder | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
relative_position=None, | |
struct_position_bias=None, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.SelfAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
position_bias=position_bias, | |
struct_position_bias=struct_position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
relative_position=relative_position, | |
) | |
hidden_states = hidden_states + self.dropout(attention_output[0]) | |
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
class CustomT5LayerCrossAttention(T5LayerCrossAttention): | |
def __init__(self, config, pos_enc_type="RPE", rpe_type="abs"): | |
super().__init__(config) | |
self.pos_enc_type=pos_enc_type | |
self.rpe_type=rpe_type | |
self.EncDecAttention = CustomT5Attention(config, has_relative_attention_bias=False, pos_enc_type=pos_enc_type, attn_type="cross", rpe_type=rpe_type) | |
self.is_decoder = config.is_decoder | |
def forward( | |
self, | |
hidden_states, | |
key_value_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
query_length=None, | |
output_attentions=False, | |
relative_position=None, | |
struct_position_bias=None, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.EncDecAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
key_value_states=key_value_states, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
query_length=query_length, | |
output_attentions=output_attentions, | |
relative_position=relative_position, | |
struct_position_bias=struct_position_bias, | |
) | |
layer_output = hidden_states + self.dropout(attention_output[0]) | |
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
from transformers.models.t5.modeling_t5 import T5Block, T5LayerFF | |
class CustomT5Block(T5Block): | |
def __init__(self, config, has_relative_attention_bias=False, pos_enc_type="RPE", rpe_type="abs"): | |
super().__init__(config, has_relative_attention_bias) | |
self.pos_enc_type=pos_enc_type | |
self.rpe_type=rpe_type | |
self.layer = nn.ModuleList() | |
self.layer.append(CustomT5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias, pos_enc_type=pos_enc_type, rpe_type=rpe_type)) | |
if self.is_decoder: | |
self.layer.append(CustomT5LayerCrossAttention(config, pos_enc_type=pos_enc_type, rpe_type=rpe_type)) | |
self.layer.append(T5LayerFF(config)) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
encoder_decoder_position_bias=None, | |
encoder_decoder_struct_position_bias=None, | |
layer_head_mask=None, | |
cross_attn_layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
return_dict=True, | |
relative_position=None, | |
struct_position_bias=None, | |
): | |
if past_key_value is not None: | |
if not self.is_decoder: | |
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") | |
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 | |
if len(past_key_value) != expected_num_past_key_values: | |
raise ValueError( | |
f"There should be {expected_num_past_key_values} past states. " | |
f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" | |
f"Got {len(past_key_value)} past key / value states" | |
) | |
self_attn_past_key_value = past_key_value[:2] | |
cross_attn_past_key_value = past_key_value[2:] | |
else: | |
self_attn_past_key_value, cross_attn_past_key_value = None, None | |
self_attention_outputs = self.layer[0]( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=self_attn_past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
relative_position=relative_position, | |
struct_position_bias=struct_position_bias, | |
) | |
hidden_states, present_key_value_state = self_attention_outputs[:2] | |
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
do_cross_attention = self.is_decoder and encoder_hidden_states is not None | |
if do_cross_attention: | |
# the actual query length is unknown for cross attention | |
# if using past key value states. Need to inject it here | |
if present_key_value_state is not None: | |
query_length = present_key_value_state[0].shape[2] | |
else: | |
query_length = None | |
cross_attention_outputs = self.layer[1]( | |
hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
position_bias=encoder_decoder_position_bias, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
query_length=query_length, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
struct_position_bias=encoder_decoder_struct_position_bias, | |
relative_position=relative_position, | |
) | |
hidden_states = cross_attention_outputs[0] | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
# Combine self attn and cross attn key value states | |
if present_key_value_state is not None: | |
present_key_value_state = present_key_value_state + cross_attention_outputs[1] | |
# Keep cross-attention outputs and relative position weights | |
attention_outputs = attention_outputs + cross_attention_outputs[2:] | |
# Apply Feed Forward layer | |
hidden_states = self.layer[-1](hidden_states) | |
# clamp inf values to enable fp16 training | |
if hidden_states.dtype == torch.float16: | |
clamp_value = torch.where( | |
torch.isinf(hidden_states).any(), | |
torch.finfo(hidden_states.dtype).max - 1000, | |
torch.finfo(hidden_states.dtype).max, | |
) | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if use_cache: | |
outputs = outputs + (present_key_value_state,) + attention_outputs | |
else: | |
outputs = outputs + attention_outputs | |
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
from transformers.models.t5.modeling_t5 import T5Stack | |
import numpy as np | |
from pathlib import Path | |
import logging | |
import os | |
logger = logging.getLogger("debug") | |
class CustomT5Stack(T5Stack): | |
def __init__(self, config, embed_tokens=None, pos_enc_type="RPE", rpe_type="abs"): | |
super().__init__(config, embed_tokens) | |
#self.pos_enc_type=pos_enc_type | |
# Alibi-rpe_sbias | |
if "-" in pos_enc_type: | |
pos_enc_split = pos_enc_type.split("-") | |
self.pos_enc_type = pos_enc_split[0] | |
self.struct_attn_type = pos_enc_split[1] | |
else: | |
self.pos_enc_type = pos_enc_type | |
self.struct_attn_type = "" | |
self.rpe_type=rpe_type | |
self.block = nn.ModuleList( | |
[CustomT5Block(config, has_relative_attention_bias=bool(i == 0), pos_enc_type=pos_enc_type, rpe_type=rpe_type) for i in range(config.num_layers)] | |
) | |
self.PE_mixer = VisionTransformerEmbedding(config.d_model, config) | |
self.config = config | |
if self.pos_enc_type == "LearnedAPE": | |
self.wpe = nn.Embedding(2048, config.d_model) | |
self.wpe.weight.data.normal_( | |
mean=0.0, std=config.initializer_factor * 1.0 | |
) | |
""" | |
parent_dir = Path(os.path.dirname(os.path.abspath(__file__))) | |
learned_embed_file = parent_dir / "gpt_neo_125m_pos_embed.npy" | |
if learned_embed_file.exists(): | |
logger.info( | |
"Loading position embedding from {}".format(learned_embed_file) | |
) | |
weight = np.load(str(learned_embed_file)) | |
self.wpe.weight.data.copy_(torch.from_numpy(weight)) | |
self.wpe.weight.requires_grad = False | |
else: | |
self.wpe.weight.data.normal_( | |
mean=0.0, std=config.initializer_factor * 1.0 | |
) | |
""" | |
if self.pos_enc_type == "SinusoidalAPE": | |
self.wpe = FixedAbsolutePositionalEmbedding(config.d_model) | |
if self.pos_enc_type in ["SinusoidalAPE2D","APEAlibi-duo","APEAlibi"]: | |
# 2D APE for encoder and cross attn | |
# A norminate obj_id just to test | |
if config.use_objidx=="yes": | |
self.wpe_obj_enc = FixedAbsolutePositionalEmbedding(config.d_model/2) # 128/2 -> 64 | |
self.wpe_x_enc = FixedAbsolutePositionalEmbedding(config.d_model/4) # 128/4 -> 32 | |
self.wpe_y_enc = FixedAbsolutePositionalEmbedding(config.d_model/4) # 128/4 -> 32 | |
# Decoder is the same old 2D | |
self.wpe_x = FixedAbsolutePositionalEmbedding(config.d_model/2) # 128/2 -> 64 | |
self.wpe_y = FixedAbsolutePositionalEmbedding(config.d_model/2) # 128/2 -> 64 | |
# 1D APE for decoder/ non-2d positions | |
self.wpe = FixedAbsolutePositionalEmbedding(config.d_model) | |
if self.pos_enc_type in ["Alibi-duo", "Alibi", "APEAlibi-duo", "APEAlibi"]: | |
# Calculate relative positions for the 2D grid | |
grid_height = self.config.grid_max_height | |
grid_width = self.config.grid_max_width | |
large_dist = max(grid_height,grid_width)+2 | |
relative_position_2d = self.calculate_2d_relative_positions(grid_height, grid_width) | |
# Create a relative position matrix for the full sequence including <s> and </s> | |
total_length = grid_height * grid_width + 2 # +2 for <s> and </s> | |
distance_matrix = torch.full((total_length, total_length), fill_value=large_dist) # 100 as a large distance | |
# Assign the 2D relative positions to the correct part of the matrix | |
distance_matrix[1:1 + grid_height * grid_width, 1:1 + grid_height * grid_width] = relative_position_2d | |
# Optionally handle <s> and </s> relative positions | |
distance_matrix[0, :] = large_dist # <s> is far from everything | |
distance_matrix[:, 0] = large_dist | |
distance_matrix[-1, :] = large_dist+1 # </s> is far from everything | |
distance_matrix[:, -1] = large_dist+1 | |
self.distance_matrix_2D = distance_matrix | |
#self.register_buffer("distance_matrix", self.distance_matrix) | |
def calculate_2d_relative_positions(self, grid_height, grid_width): | |
# Create grid coordinates | |
x_coords, y_coords = torch.meshgrid( | |
torch.arange(grid_height, dtype=torch.long), | |
torch.arange(grid_width, dtype=torch.long), | |
indexing='ij' | |
) | |
# Flatten the 2D grid coordinates | |
x_flat = x_coords.flatten() | |
y_flat = y_coords.flatten() | |
# Initialize the relative position matrix | |
num_positions = grid_height * grid_width | |
relative_position = torch.zeros((num_positions, num_positions), dtype=torch.long) | |
# Calculate Manhattan distance between each pair of points | |
for i in range(num_positions): | |
for j in range(num_positions): | |
relative_position[i, j] = abs(x_flat[i] - x_flat[j]) + abs(y_flat[i] - y_flat[j]) | |
return relative_position | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
inputs_embeds=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
position_ids=None, | |
return_dict=None, | |
relative_position=None, | |
object_idx=None, | |
): | |
# Model parallel | |
if self.model_parallel: | |
torch.cuda.set_device(self.first_device) | |
self.embed_tokens = self.embed_tokens.to(self.first_device) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError( | |
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") | |
if self.pos_enc_type in ["Alibi-duo", "Alibi", "APEAlibi-duo", "APEAlibi"]: | |
relative_position = self.distance_matrix_2D | |
#print(f"input_ids.shape:{input_ids.shape}") | |
# Print the shape of the embedding matrix | |
#print(f"Embedding matrix shape: {self.embed_tokens.weight.shape}") | |
# Print unique values in input_ids | |
#unique_input_ids = torch.unique(input_ids) | |
#print(f"Unique input IDs: {unique_input_ids}") | |
#print(f"Max input ID: {torch.max(unique_input_ids)}") | |
#print(f"Min input ID: {torch.min(unique_input_ids)}") | |
if inputs_embeds is None: | |
if self.embed_tokens is None: | |
raise ValueError("You have to initialize the model with valid token embeddings") | |
inputs_embeds = self.embed_tokens(input_ids) | |
#print(f"inputs_embeds.shape:{inputs_embeds.shape}") | |
batch_size, seq_length = input_shape | |
# required mask seq length can be calculated via length of past | |
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length | |
#print(f"mask_seq_length:{mask_seq_length}") | |
# Add 2D position embeddings, but only on input seq | |
if self.pos_enc_type in [ | |
"SinusoidalAPE2D","APEAlibi-duo","APEAlibi" | |
]: | |
if self.is_decoder or self.config.use_objidx!="yes": | |
if position_ids is not None: | |
position_ids = position_ids.view(-1, input_shape[-1]) | |
if past_key_values is None: | |
past_length = 0 | |
else: | |
past_length = past_key_values[0][0].size(-2) | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if position_ids is None: | |
position_ids = torch.arange( | |
past_length, | |
input_shape[-1] + past_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) | |
#print(f"position_ids.shape:{position_ids.shape}") | |
#print(f"position_ids:{position_ids}") | |
if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025 or True: | |
#if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025: | |
# Desired dimensions for ARC IO, individually | |
# For decoder because we have <pad> as first token | |
rows = self.config.grid_max_height | |
cols = self.config.grid_max_width | |
# Flatten the position_ids tensor to remove batch dimension | |
flat_position_ids = position_ids.view(-1) | |
#print(f"flat_position_ids.shape:{flat_position_ids.shape}") | |
#print(f"flat_position_ids:{flat_position_ids}") | |
# Generate position_ids_x | |
position_ids_x = torch.arange(cols, device=device).repeat(rows) | |
# Generate position_ids_y | |
position_ids_y = torch.arange(rows, device=device).repeat_interleave(cols) | |
# Handling batch size, repeat for each batch | |
batch_size = position_ids.shape[0] | |
position_ids_x = position_ids_x.repeat(batch_size, 1) | |
position_ids_y = position_ids_y.repeat(batch_size, 1) | |
#position_embeds = self.wpe(position_ids) | |
position_embeds_x = self.wpe_x(position_ids_x) | |
position_embeds_y = self.wpe_y(position_ids_y) | |
#print(f"position_embeds_x.shape:{position_embeds_x.shape}") | |
#position_embeds | |
position_embeds_2d = torch.cat((position_embeds_x, position_embeds_y), dim=-1) | |
# Apply 1D sinAPE for the <pad> token and tokens beyond 2+1024 | |
position_embeds_1d = self.wpe(position_ids) | |
if self.is_decoder: | |
# Combine embeddings | |
position_embeds = position_embeds_1d.clone() | |
#print(f"position_embeds=position_embeds_1d.clone().shape:{position_embeds.shape}") | |
p_seq_len = position_ids.shape[-1] | |
#print(f"p_seq_len:{p_seq_len}") | |
if p_seq_len >= 1123: | |
position_embeds[:, 1:1123] = position_embeds_2d[:, :1122] | |
elif p_seq_len == 1: | |
pos_index = flat_position_ids[0] | |
if pos_index == 0: | |
# <pad> for 1d APE | |
pass | |
elif pos_index>1 and pos_index<=1122: | |
# For model.generate() this will always be 1, but position_ids=(bs, pos_index) | |
position_embeds[:, 0] = position_embeds_2d[:, pos_index-1] | |
else: | |
# > 1025 | |
pass | |
else: | |
#print(f"position_embeds.shape:{position_embeds.shape}") | |
#print(f"position_embeds_2d.shape:{position_embeds_2d.shape}") | |
#print(f"position_embeds[:, 1:p_seq_len].shape:{position_embeds[:, 1:p_seq_len].shape}") | |
#print(f"position_embeds_2d[:, :p_seq_len-1].shape:{position_embeds_2d[:, :p_seq_len-1].shape}") | |
position_embeds[:, 1:p_seq_len] = position_embeds_2d[:, :p_seq_len-1] | |
else: | |
position_embeds = position_embeds_1d.clone() | |
position_embeds[:, 1:1123] = position_embeds_2d[:, :1122] | |
else: | |
# 1D sinAPE | |
position_embeds = self.wpe(position_ids) | |
else: | |
# if NOT self.is_decoder: | |
if position_ids is not None: | |
position_ids = position_ids.view(-1, input_shape[-1]) | |
if past_key_values is None: | |
past_length = 0 | |
else: | |
past_length = past_key_values[0][0].size(-2) | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if position_ids is None: | |
position_ids = torch.arange( | |
past_length, | |
input_shape[-1] + past_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) | |
#print(f"position_ids.shape:{position_ids.shape}") | |
#print(f"position_ids:{position_ids}") | |
if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025 or True: | |
#if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025: | |
# Desired dimensions for ARC IO, individually | |
# For decoder because we have <pad> as first token | |
rows = self.config.grid_max_height | |
cols = self.config.grid_max_width | |
# Flatten the position_ids tensor to remove batch dimension | |
flat_position_ids = position_ids.view(-1) | |
#print(f"flat_position_ids.shape:{flat_position_ids.shape}") | |
#print(f"flat_position_ids:{flat_position_ids}") | |
# Generate position_ids_x | |
position_ids_x = torch.arange(cols, device=device).repeat(rows) | |
# Generate position_ids_y | |
position_ids_y = torch.arange(rows, device=device).repeat_interleave(cols) | |
# Handling batch size, repeat for each batch | |
batch_size = position_ids.shape[0] | |
position_ids_x = position_ids_x.repeat(batch_size, 1) | |
position_ids_y = position_ids_y.repeat(batch_size, 1) | |
# Get the object embeddings | |
object_embeds = self.wpe_obj_enc(object_idx[:, 1:-1]) # Assuming `object_idx` is passed in | |
#print(f"object_idx.shape:{object_idx.shape}") | |
#print(f"object_embeds.shape:{object_embeds.shape}") | |
#position_embeds = self.wpe(position_ids) | |
position_embeds_x = self.wpe_x_enc(position_ids_x) | |
#print(f"position_ids_x.shape:{position_ids_x.shape}") | |
#print(f"position_embeds_x.shape:{position_embeds_x.shape}") | |
position_embeds_y = self.wpe_y_enc(position_ids_y) | |
# Expand position_embeds_x and position_embeds_y to match the batch size | |
position_embeds_x = position_embeds_x.expand(object_embeds.size(0), -1, -1) # Expand along the batch size | |
position_embeds_y = position_embeds_y.expand(object_embeds.size(0), -1, -1) # Expand along the batch size | |
#position_embeds | |
#position_embeds_2d = torch.cat((position_embeds_x, position_embeds_y), dim=-1) | |
position_embeds_2d = torch.cat((object_embeds, position_embeds_x, position_embeds_y), dim=-1) | |
# Apply 1D sinAPE for the <pad> token and tokens beyond 2+1024 | |
position_embeds_1d = self.wpe(position_ids) | |
position_embeds_1d = position_embeds_1d.expand(object_embeds.size(0), -1, -1) # Expand along the batch size | |
position_embeds = position_embeds_1d.clone() | |
position_embeds[:, 1:1123] = position_embeds_2d[:, :1122] | |
else: | |
# 1D sinAPE | |
position_embeds = self.wpe(position_ids) | |
#print(f"position_embeds.shape:{position_embeds.shape}") | |
#print(f"position_embeds:{position_embeds}") | |
#inputs_embeds += position_embeds | |
inputs_embeds = self.PE_mixer(inputs_embeds, position_embeds) | |
if self.pos_enc_type in [ | |
"SinusoidalAPE", | |
"LearnedAPE", | |
]: | |
if position_ids is not None: | |
position_ids = position_ids.view(-1, input_shape[-1]) | |
if past_key_values is None: | |
past_length = 0 | |
else: | |
past_length = past_key_values[0][0].size(-2) | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if position_ids is None: | |
position_ids = torch.arange( | |
past_length, | |
input_shape[-1] + past_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) | |
#print(f"position_ids.shape:{position_ids.shape}") | |
position_embeds = self.wpe(position_ids) | |
#print(f"position_embeds.shape:{position_embeds.shape}") | |
inputs_embeds += position_embeds | |
if self.struct_attn_type == "ape_sbias": | |
# Extra APE, naive trial | |
if relative_position is not None: | |
struct_position_ids = relative_position.view(-1, input_shape[-1]) | |
#print(relative_position) | |
#print(f"struct_position_ids.shape:{struct_position_ids.shape}") | |
#print(struct_position_ids) | |
struct_position_embeds = self.wpe(struct_position_ids) | |
#print(f"struct_position_embeds.shape:{struct_position_embeds.shape}") | |
inputs_embeds += struct_position_embeds | |
if use_cache is True: | |
if not self.is_decoder: | |
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") | |
# initialize past_key_values with `None` if past does not exist | |
if past_key_values is None: | |
past_key_values = [None] * len(self.block) | |
if attention_mask is None: | |
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones( | |
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long | |
) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.num_layers) | |
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) | |
present_key_value_states = () if use_cache else None | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and self.is_decoder) else None | |
position_bias = None | |
struct_position_bias = None | |
encoder_decoder_position_bias = None | |
encoder_decoder_struct_position_bias = None | |
hidden_states = self.dropout(inputs_embeds) | |
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): | |
layer_head_mask = head_mask[i] | |
cross_attn_layer_head_mask = cross_attn_head_mask[i] | |
# Model parallel | |
if self.model_parallel: | |
torch.cuda.set_device(hidden_states.device) | |
# Ensure that attention_mask is always on the same device as hidden_states | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(hidden_states.device) | |
if position_bias is not None: | |
position_bias = position_bias.to(hidden_states.device) | |
if struct_position_bias is not None: | |
struct_position_bias = struct_position_bias.to(hidden_states.device) | |
if encoder_hidden_states is not None: | |
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) | |
if encoder_extended_attention_mask is not None: | |
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) | |
if encoder_decoder_position_bias is not None: | |
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) | |
if encoder_decoder_struct_position_bias is not None: | |
encoder_decoder_struct_position_bias = encoder_decoder_struct_position_bias.to(hidden_states.device) | |
if layer_head_mask is not None: | |
layer_head_mask = layer_head_mask.to(hidden_states.device) | |
if cross_attn_layer_head_mask is not None: | |
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.forward, | |
hidden_states, | |
extended_attention_mask, | |
position_bias, | |
encoder_hidden_states, | |
encoder_extended_attention_mask, | |
encoder_decoder_position_bias, | |
layer_head_mask, | |
cross_attn_layer_head_mask, | |
None, # past_key_value is always None with gradient checkpointing | |
use_cache, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
position_bias=position_bias, | |
struct_position_bias=struct_position_bias, # Pass the struct_position_bias to the layer | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
encoder_decoder_position_bias=encoder_decoder_position_bias, | |
encoder_decoder_struct_position_bias=encoder_decoder_struct_position_bias, | |
layer_head_mask=layer_head_mask, | |
cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
relative_position=relative_position, # Pass the relative_position to the layer | |
) | |
# layer_outputs is a tuple with: | |
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
# hidden-states, key-value-states, (self-attention position bias), (self-attention struct position bias), (self-attention weights), | |
# (cross-attention position bias), (cross-attention struct position bias), (cross-attention weights) | |
if use_cache is False: | |
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | |
hidden_states, present_key_value_state = layer_outputs[:2] | |
# We share the position biases between the layers - the first layer store them | |
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), | |
# (cross-attention position bias), (cross-attention weights) | |
position_bias = layer_outputs[2] | |
struct_position_bias = layer_outputs[3] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_decoder_position_bias = layer_outputs[5 if output_attentions else 4] | |
encoder_decoder_struct_position_bias = layer_outputs[7 if output_attentions else 5] | |
# append next layer key value states | |
if use_cache: | |
present_key_value_states = present_key_value_states + (present_key_value_state,) | |
""" | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[3],) | |
if self.is_decoder: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) | |
""" | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[4],) | |
if self.is_decoder: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[6],) | |
# Model Parallel: If it's the last layer for that device, put things on the next device | |
if self.model_parallel: | |
for k, v in self.device_map.items(): | |
if i == v[-1] and "cuda:" + str(k) != self.last_device: | |
hidden_states = hidden_states.to("cuda:" + str(k + 1)) | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
present_key_value_states, | |
all_hidden_states, | |
all_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=present_key_value_states, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
from transformers.models.t5.modeling_t5 import T5ForConditionalGeneration, T5Config | |
import copy | |
import math | |
import os | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
Seq2SeqQuestionAnsweringModelOutput, | |
Seq2SeqSequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer | |
from transformers.utils import ( | |
DUMMY_INPUTS, | |
DUMMY_MASK, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_torch_fx_proxy, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
from transformers.models.t5.configuration_t5 import T5Config | |
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
__HEAD_MASK_WARNING_MSG = """ | |
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, | |
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. | |
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, | |
num_heads)`. | |
""" | |
class CustomT5ForConditionalGeneration(T5ForConditionalGeneration): | |
def __init__(self, config: T5Config, pos_enc_type="RPE", rpe_type="abs"): | |
super().__init__(config) | |
self.model_dim = config.d_model | |
self.pos_enc_type=pos_enc_type | |
self.rpe_type=rpe_type | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = CustomT5Stack(encoder_config, self.shared, pos_enc_type=pos_enc_type, rpe_type=rpe_type) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = CustomT5Stack(decoder_config, self.shared, pos_enc_type=pos_enc_type, rpe_type=rpe_type) | |
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
# customized distance_matrix w.r.t to encoder self-attention | |
distance_matrix: Optional[torch.FloatTensor] = None, | |
object_idx: Optional[torch.FloatTensor] = None, | |
# unlike nlp [0,..n] natural sequence, customized struct_position_indexs | |
# For now, just re-use distance_matrix if APE-sbias | |
#struct_position_indexs: Optional[torch.FloatTensor] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for | |
labels in `[0, ..., config.vocab_size]` | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration | |
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") | |
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") | |
>>> # training | |
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids | |
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids | |
>>> outputs = model(input_ids=input_ids, labels=labels) | |
>>> loss = outputs.loss | |
>>> logits = outputs.logits | |
>>> # inference | |
>>> input_ids = tokenizer( | |
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> outputs = model.generate(input_ids) | |
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
>>> # studies have shown that owning a dog is good for you. | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
if head_mask is not None and decoder_head_mask is None: | |
if self.config.num_layers == self.config.num_decoder_layers: | |
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
decoder_head_mask = head_mask | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
# Convert encoder inputs in embeddings if needed | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
relative_position=distance_matrix, # Pass the distance_matrix here | |
object_idx=object_idx, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
if self.model_parallel: | |
torch.cuda.set_device(self.decoder.first_device) | |
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
# get decoder inputs from shifting lm labels to the right | |
decoder_input_ids = self._shift_right(labels) | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.decoder.first_device) | |
hidden_states = hidden_states.to(self.decoder.first_device) | |
if decoder_input_ids is not None: | |
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(self.decoder.first_device) | |
if decoder_attention_mask is not None: | |
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = decoder_outputs[0] | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.encoder.first_device) | |
self.lm_head = self.lm_head.to(self.encoder.first_device) | |
sequence_output = sequence_output.to(self.lm_head.weight.device) | |
if self.config.tie_word_embeddings: | |
# Rescale output before projecting on vocab | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 | |
sequence_output = sequence_output * (self.model_dim**-0.5) | |
lm_logits = self.lm_head(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-100) | |
# move labels to correct device to enable PP | |
labels = labels.to(lm_logits.device) | |
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | |
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 | |
if not return_dict: | |
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |