File size: 17,847 Bytes
3052d0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
import numpy as np
from collections import deque, Counter
# --- Grid Transformation Functions ---
def remove_vertical_lines(ctx):
rows, cols = len(ctx.grid), len(ctx.grid[0])
for obj in ctx.objects:
columns = {}
for r, c in obj[2]:
if c not in columns:
columns[c] = []
columns[c].append(r)
for c, rows_in_col in columns.items():
if len(rows_in_col) > 1:
unique_vals = {ctx.grid[r][c] for r in rows_in_col}
if len(unique_vals) == 1:
for r in rows_in_col:
ctx.grid[r][c] = 0
return ctx.grid
def fill_object_interior(ctx):
"""
Fills the interior of each object in the GPContext grid.
Assumes ctx.objects has been extracted already.
"""
rows, cols = len(ctx.grid), len(ctx.grid[0])
for obj in ctx.objects:
min_r = min(r for r, c in obj)
max_r = max(r for r, c in obj)
min_c = min(c for r, c in obj)
max_c = max(c for r, c in obj)
obj_color = ctx.grid[min_r][min_c]
fill_color = (obj_color + 1) % 9 or 1 # consistent color, avoid zero
for r in range(min_r, max_r + 1):
for c in range(min_c, max_c + 1):
if (r, c) not in obj and ctx.grid[r][c] == 0:
ctx.grid[r][c] = fill_color
return ctx.grid
def move_right_most_object(ctx):
if not ctx.objects:
return ctx.grid
# Get rightmost object: object with largest column index
rightmost_object = max(ctx.objects, key=lambda obj: max(y for x, y in obj[2]))
_, value, block = rightmost_object
for x, y in block:
ctx.grid[x][y] = 0
shift = 0
cols = len(ctx.grid[0])
while True:
can_move = True
for x, y in block:
new_y = y + shift + 1
if new_y >= cols or ctx.grid[x][new_y] != 0:
can_move = False
break
if not can_move:
break
shift += 1
for x, y in block:
ctx.grid[x][y + shift] = value
return ctx.grid
def move_left_most_object(ctx):
if not ctx.objects:
return ctx.grid
# Get leftmost object: object with smallest column index
leftmost_object = min(ctx.objects, key=lambda obj: min(y for x, y in obj[2]))
_, value, block = leftmost_object
for x, y in block:
ctx.grid[x][y] = 0
shift = 0
while True:
can_move = True
for x, y in block:
new_y = y - (shift + 1)
if new_y < 0 or ctx.grid[x][new_y] != 0:
can_move = False
break
if not can_move:
break
shift += 1
for x, y in block:
ctx.grid[x][y - shift] = value
return ctx.grid
def move_bottom_most_object(ctx):
if not ctx.objects:
return ctx.grid
# Get bottommost object (last one in the list after sorting by top_row)
bottom_object = ctx.objects[-1]
_, value, block = bottom_object
# Remove it from the grid
for x, y in block:
ctx.grid[x][y] = 0
# Compute shift (same as top, move down)
shift = 0
rows = len(ctx.grid)
while True:
can_move = True
for x, y in block:
new_x = x + shift + 1
if new_x >= rows or ctx.grid[new_x][y] != 0:
can_move = False
break
if not can_move:
break
shift += 1
# Place object
for x, y in block:
ctx.grid[x + shift][y] = value
return ctx.grid
def detect_objects(grid):
"""
Detects objects in an ARC grid.
Objects are contiguous regions of the same color (4-connected).
Returns a list of objects, where each object is a set of (row, col) coordinates.
"""
rows, cols = len(grid), len(grid[0])
visited = set()
objects = []
def bfs(start_r, start_c, color):
""" Perform BFS to find all connected pixels of the same color """
queue = deque([(start_r, start_c)])
obj_pixels = set()
while queue:
r, c = queue.popleft()
if (r, c) in visited:
continue
visited.add((r, c))
obj_pixels.add((r, c))
# Check 4-connected neighbors (up, down, left, right)
for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
nr, nc = r + dr, c + dc
if 0 <= nr < rows and 0 <= nc < cols and (nr, nc) not in visited:
if grid[nr][nc] == color:
queue.append((nr, nc))
return obj_pixels
# Iterate over the grid to find objects
for r in range(rows):
for c in range(cols):
if (r, c) not in visited and grid[r][c] != 0: # Ignore background (0)
obj = bfs(r, c, grid[r][c])
objects.append(obj)
return objects
def highlight_detected_objects(grid):
objects = detect_objects(grid)
new_grid = [row[:] for row in grid]
for idx, obj in enumerate(objects, start=1):
for r, c in obj:
new_grid[r][c] = (idx % 9) or 1
return new_grid
def fill_object_interior(grid):
""" Modifies the grid by filling the interiors of detected objects with a different color."""
objects = detect_objects(grid)
rows, cols = len(grid), len(grid[0])
new_grid = [row[:] for row in grid] # Create a copy of the grid
for obj in objects:
min_r = min(r for r, c in obj)
max_r = max(r for r, c in obj)
min_c = min(c for r, c in obj)
max_c = max(c for r, c in obj)
# Find a new fill color (incrementing the current color modulo 9 for variation)
obj_color = grid[min_r][min_c]
fill_color = (obj_color + 1) % 9 if obj_color + 1 != 0 else 1
# Identify and fill the interior pixels of the object
for r in range(min_r, max_r + 1):
for c in range(min_c, max_c + 1):
if (r, c) not in obj and grid[r][c] == 0: # Empty space inside the object
new_grid[r][c] = fill_color
return new_grid
def diamirror(input_grid):
return np.transpose(input_grid)
import numpy as np
def get_object_bounds(grid):
grid = np.array(grid)
top, bottom = None, None
for i in range(grid.shape[0]):
if np.any(grid[i] != 0):
if top is None:
top = i
bottom = i
return top, bottom
def reverse_object_top_bottom(grid):
grid = np.array(grid)
top, bottom = get_object_bounds(grid)
if top is None or bottom is None:
return grid
grid_copy = np.copy(grid)
grid_copy[top:bottom+1] = np.flipud(grid[top:bottom+1])
return grid_copy
def hmirror(input_grid: np.ndarray) -> np.ndarray:
return np.fliplr(input_grid)
def vmirrors(input_grid: np.ndarray) -> np.ndarray:
return np.flipud(input_grid)
def flip_horizontal(input_grid: np.ndarray) -> np.ndarray:
return np.fliplr(input_grid)
def flip_vertical(input_grid: np.ndarray) -> np.ndarray:
return np.flipud(input_grid)
def rotate_90(input_grid: np.ndarray) -> np.ndarray:
return np.rot90(input_grid, k=-1)
def rotate_180(input_grid: np.ndarray) -> np.ndarray:
return np.rot90(input_grid, k=2)
def rotate_270(input_grid: np.ndarray) -> np.ndarray:
return np.rot90(input_grid, k=1)
def identity(input_grid: np.ndarray) -> np.ndarray:
return input_grid
def find_center_pixel(grid):
"""Finds the center pixel of the input grid and returns it as a 1x1 output grid."""
center_index = len(grid[0]) // 2 # Get the middle index
return [[grid[0][center_index]]] # Return as a 1x1 grid with the center pixel
# --- Object Detection and Manipulation ---
def detect_objects(grid):
"""Detects objects in the grid and returns a list of bounding boxes and pixel coordinates."""
height, width = len(grid), len(grid[0])
visited = set()
objects = []
def bfs(r, c, color):
"""Finds all pixels belonging to an object using BFS."""
queue = [(r, c)]
pixels = [] # Use a list instead of a set
min_r, max_r, min_c, max_c = r, r, c, c
while queue:
x, y = queue.pop(0)
if (x, y) in visited:
continue
visited.add((x, y))
pixels.append((x, y)) # Append to list
min_r, max_r = min(min_r, x), max(max_r, x)
min_c, max_c = min(min_c, y), max(max_c, y)
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]: # Only vertical & horizontal connections
nx, ny = x + dx, y + dy
if (0 <= nx < height and 0 <= ny < width and (nx, ny) not in visited and grid[nx][ny] == color):
queue.append((nx, ny))
return (min_r, max_r, min_c, max_c, color, pixels) # Return tuple, pixels as a list
for r in range(height):
for c in range(width):
if grid[r][c] != 0 and (r, c) not in visited:
visited.add((r, c))
objects.append(bfs(r, c, grid[r][c])) # Append tuple to list
return objects # Ensure `objects` is a list, not a set
def extract_bottom_object(grid):
"""Extracts the bottom-most object from the grid, crops it, and returns it as a new grid."""
objects = detect_objects(grid)
if not objects:
return grid
bottom_object = max(objects, key=lambda obj: obj[1]) # obj[1] is max_r
min_r, max_r, min_c, max_c, obj_color, pixels = bottom_object
cropped_height = max_r - min_r + 1
cropped_width = max_c - min_c + 1
cropped_grid = np.zeros((cropped_height, cropped_width), dtype=int)
for r, c in pixels:
cropped_grid[r - min_r, c - min_c] = obj_color
return cropped_grid.tolist()
def keep_bottom_object(grid):
"""Keeps only the bottom-most object and removes all others."""
height, width = len(grid), len(grid[0])
objects = detect_objects(grid)
output_grid = np.zeros((height, width), dtype=int)
if not objects:
return output_grid.tolist()
bottom_object = max(objects, key=lambda obj: obj[1]) # obj[1] is max_r
for r, c in bottom_object[5]: # obj[5] contains pixels
output_grid[r][c] = bottom_object[4] # obj[4] is color
return output_grid.tolist()
def recolor_to_bottom_object(grid):
"""Recolors all objects to match the color of the bottom-most object."""
height, width = len(grid), len(grid[0])
objects = detect_objects(grid)
output_grid = np.array(grid)
if not objects:
return output_grid.tolist()
bottom_object = max(objects, key=lambda obj: obj[1]) # obj[1] is max_r
bottom_color = bottom_object[4] # obj[4] is color
for min_r, max_r, min_c, max_c, obj_color, pixels in objects:
for r, c in pixels:
output_grid[r][c] = bottom_color # Change to bottom-most object's color
return output_grid.tolist()
def remove_top_bottom_objects(grid):
"""Removes objects that touch either the top or bottom of the grid."""
height, width = len(grid), len(grid[0])
objects = detect_objects(grid)
output_grid = np.zeros((height, width), dtype=int)
if not objects:
return output_grid.tolist()
min_top = min(obj[0] for obj in objects)
max_bottom = max(obj[1] for obj in objects)
for (min_r, max_r, min_c, max_c, obj_color, pixels) in objects:
if min_r == min_top or max_r == max_bottom:
continue
for r, c in pixels:
output_grid[r][c] = obj_color
return output_grid.tolist()
def extract_topmost_object(grid):
"""Extracts the top-most object from the grid, crops it, and returns it as a new grid."""
objects = detect_objects(grid)
if not objects:
return grid
topmost_object = min(objects, key=lambda obj: obj[0]) # obj[0] is min_r
min_r, max_r, min_c, max_c, obj_color, pixels = topmost_object
cropped_height = max_r - min_r + 1
cropped_width = max_c - min_c + 1
cropped_grid = np.zeros((cropped_height, cropped_width), dtype=int)
for r, c in pixels:
cropped_grid[r - min_r, c - min_c] = obj_color
return cropped_grid.tolist()
def swap_objects(grid):
"""Swaps detected objects in the grid."""
objects = detect_objects(grid)
objects = sorted(objects, key=lambda obj: obj[1]) # Sort by vertical position
object_positions = [obj[5] for obj in objects] # obj[5] contains pixels
object_colors = [obj[4] for obj in objects] # obj[4] is color
swapped_positions = object_positions[::-1]
new_grid = np.zeros_like(grid)
for color, new_positions in zip(object_colors, swapped_positions):
for r, c in new_positions:
new_grid[r][c] = color
return new_grid.tolist()
# --- Pixel & Color Manipulation ---
def transform_blue_to_red(input_grid):
"""Transforms all blue (1) pixels to red (2)."""
grid = np.array(input_grid)
return np.where(grid == 1, 2, grid).tolist()
def fill_downward(grid):
"""Fills non-zero pixels downward, propagating their colors downwards in each column."""
height, width = len(grid), len(grid[0])
output_grid = np.array(grid)
for col in range(width):
fill_color = 0
for row in range(height):
if grid[row][col] != 0:
fill_color = grid[row][col]
if fill_color != 0:
output_grid[row][col] = fill_color
return output_grid.tolist()
def remove_below_horizontal_line(grid):
"""Detects the first fully connected horizontal line and removes everything below it."""
height, width = len(grid), len(grid[0])
output_grid = np.array(grid)
for row in range(height):
if np.all(output_grid[row] != 0):
output_grid[row + 1:] = 0
break
return output_grid.tolist()
def find_center_pixel(grid):
"""Finds the center of the grid and returns it as a 1x1 pixel grid."""
center_index = len(grid[0]) // 2
return [[grid[0][center_index]]]
def extract_largest_row(grid):
"""Finds the row with the most non-zero elements and extracts it."""
grid = np.array(grid)
max_length = 0
longest_row = []
for row in grid:
row_values = row[row > 0]
if len(row_values) > max_length:
max_length = len(row_values)
longest_row = row_values.tolist()
return [longest_row]
def extract_dominant_colors(grid):
"""Finds the two most dominant non-zero colors in the grid."""
flattened = [cell for row in grid for cell in row if cell != 0]
color_counts = Counter(flattened)
if not color_counts:
return [[]]
most_common_colors = [color for color, _ in color_counts.most_common(2)]
return [[color for color in most_common_colors]]
def remove_dominant_color(grid):
"""Removes the most dominant color from the grid."""
color_counts = Counter(cell for row in grid for cell in row if cell != 0)
if color_counts:
dominant_color = max(color_counts, key=color_counts.get)
else:
return grid
return [[0 if cell == dominant_color else cell for cell in row] for row in grid]
def find_least_dominant_pixel(grid):
"""Finds the least occurring non-zero pixel in the grid."""
pixel_counts = {}
for row in grid:
for value in row:
if value != 0:
pixel_counts[value] = pixel_counts.get(value, 0) + 1
if not pixel_counts:
return None
return min(pixel_counts, key=pixel_counts.get)
def remove_least_dominant_pixel(grid):
"""Removes the least dominant pixel from the grid."""
rows, cols = len(grid), len(grid[0])
least_dominant_pixel = find_least_dominant_pixel(grid)
if least_dominant_pixel is None:
return grid
new_grid = np.array(grid)
for x in range(rows):
for y in range(cols):
if grid[x][y] == least_dominant_pixel:
new_grid[x, y] = 0
return new_grid.tolist()
def upscale(input_grid, upscale_factor=3):
"""Upscales the grid by expanding each pixel into a 3x3 block."""
def expand_pixel_with_grid(pixel, input_grid):
if pixel == 0:
return np.zeros((upscale_factor, upscale_factor), dtype=int)
else:
return input_grid
input_rows, input_cols = len(input_grid), len(input_grid[0])
output_grid = np.zeros((input_rows * upscale_factor, input_cols * upscale_factor), dtype=int)
for r in range(input_rows):
for c in range(input_cols):
expanded_block = expand_pixel_with_grid(input_grid[r][c], input_grid)
output_grid[r * upscale_factor: (r + 1) * upscale_factor, c * upscale_factor: (c + 1) * upscale_factor] = expanded_block
return output_grid
def remove_center_object(grid):
"""Removes anything located at the center of the grid."""
height, width = len(grid), len(grid[0])
center_r, center_c = height // 2, width // 2
grid = np.array(grid)
center_value = grid[center_r, center_c]
if center_value != 0:
grid[grid == center_value] = 0
return grid.tolist()
import numpy as np
def draw_horizontal_vertical(grid):
"""Adds a horizontal or vertical line of 8s based on object orientation."""
if grid is None or len(grid) == 0 or len(grid[0]) == 0:
print("ERROR: Grid is empty. Cannot apply draw_horizontal_vertical.")
return grid
rows, cols = len(grid), len(grid[0])
print(f"Grid Shape Before Modification: {rows}x{cols}") # Debugging Info
new_grid = np.array(grid)
for r in range(rows):
new_grid[r][-1] = 8 # Rightmost column
for c in range(cols):
new_grid[0][c] = 8 # Topmost row
return new_grid.tolist()
|