File size: 17,847 Bytes
3052d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import numpy as np
from collections import deque, Counter

# --- Grid Transformation Functions ---
def remove_vertical_lines(ctx):
    rows, cols = len(ctx.grid), len(ctx.grid[0])
    
    for obj in ctx.objects:
        columns = {}
        for r, c in obj[2]:
            if c not in columns:
                columns[c] = []
            columns[c].append(r)

        for c, rows_in_col in columns.items():
            if len(rows_in_col) > 1:
                unique_vals = {ctx.grid[r][c] for r in rows_in_col}
                if len(unique_vals) == 1:
                    for r in rows_in_col:
                        ctx.grid[r][c] = 0
    return ctx.grid
def fill_object_interior(ctx):
    """
    Fills the interior of each object in the GPContext grid.
    Assumes ctx.objects has been extracted already.
    """
    rows, cols = len(ctx.grid), len(ctx.grid[0])

    for obj in ctx.objects:
        min_r = min(r for r, c in obj)
        max_r = max(r for r, c in obj)
        min_c = min(c for r, c in obj)
        max_c = max(c for r, c in obj)

        obj_color = ctx.grid[min_r][min_c]
        fill_color = (obj_color + 1) % 9 or 1  # consistent color, avoid zero

        for r in range(min_r, max_r + 1):
            for c in range(min_c, max_c + 1):
                if (r, c) not in obj and ctx.grid[r][c] == 0:
                    ctx.grid[r][c] = fill_color

    return ctx.grid

def move_right_most_object(ctx):
    if not ctx.objects:
        return ctx.grid

    # Get rightmost object: object with largest column index
    rightmost_object = max(ctx.objects, key=lambda obj: max(y for x, y in obj[2]))
    _, value, block = rightmost_object

    for x, y in block:
        ctx.grid[x][y] = 0

    shift = 0
    cols = len(ctx.grid[0])
    while True:
        can_move = True
        for x, y in block:
            new_y = y + shift + 1
            if new_y >= cols or ctx.grid[x][new_y] != 0:
                can_move = False
                break
        if not can_move:
            break
        shift += 1

    for x, y in block:
        ctx.grid[x][y + shift] = value

    return ctx.grid
def move_left_most_object(ctx):
    if not ctx.objects:
        return ctx.grid

    # Get leftmost object: object with smallest column index
    leftmost_object = min(ctx.objects, key=lambda obj: min(y for x, y in obj[2]))
    _, value, block = leftmost_object

    for x, y in block:
        ctx.grid[x][y] = 0

    shift = 0
    while True:
        can_move = True
        for x, y in block:
            new_y = y - (shift + 1)
            if new_y < 0 or ctx.grid[x][new_y] != 0:
                can_move = False
                break
        if not can_move:
            break
        shift += 1

    for x, y in block:
        ctx.grid[x][y - shift] = value

    return ctx.grid

def move_bottom_most_object(ctx):
    if not ctx.objects:
        return ctx.grid

    # Get bottommost object (last one in the list after sorting by top_row)
    bottom_object = ctx.objects[-1]
    _, value, block = bottom_object

    # Remove it from the grid
    for x, y in block:
        ctx.grid[x][y] = 0

    # Compute shift (same as top, move down)
    shift = 0
    rows = len(ctx.grid)
    while True:
        can_move = True
        for x, y in block:
            new_x = x + shift + 1
            if new_x >= rows or ctx.grid[new_x][y] != 0:
                can_move = False
                break
        if not can_move:
            break
        shift += 1

    # Place object
    for x, y in block:
        ctx.grid[x + shift][y] = value

    return ctx.grid
def detect_objects(grid):
    """
    Detects objects in an ARC grid.
    Objects are contiguous regions of the same color (4-connected).
    Returns a list of objects, where each object is a set of (row, col) coordinates.
    """
    rows, cols = len(grid), len(grid[0])
    visited = set()
    objects = []
    
    def bfs(start_r, start_c, color):
        """ Perform BFS to find all connected pixels of the same color """
        queue = deque([(start_r, start_c)])
        obj_pixels = set()
        
        while queue:
            r, c = queue.popleft()
            if (r, c) in visited:
                continue
            
            visited.add((r, c))
            obj_pixels.add((r, c))
            
            # Check 4-connected neighbors (up, down, left, right)
            for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
                nr, nc = r + dr, c + dc
                if 0 <= nr < rows and 0 <= nc < cols and (nr, nc) not in visited:
                    if grid[nr][nc] == color:
                        queue.append((nr, nc))
        
        return obj_pixels
    
    # Iterate over the grid to find objects
    for r in range(rows):
        for c in range(cols):
            if (r, c) not in visited and grid[r][c] != 0:  # Ignore background (0)
                obj = bfs(r, c, grid[r][c])
                objects.append(obj)
    
    return objects
def highlight_detected_objects(grid):
    objects = detect_objects(grid)
    new_grid = [row[:] for row in grid]
    for idx, obj in enumerate(objects, start=1):
        for r, c in obj:
            new_grid[r][c] = (idx % 9) or 1
    return new_grid

def fill_object_interior(grid):
    """ Modifies the grid by filling the interiors of detected objects with a different color."""
    objects = detect_objects(grid)
    rows, cols = len(grid), len(grid[0])
    new_grid = [row[:] for row in grid]  # Create a copy of the grid
    
    for obj in objects:
        min_r = min(r for r, c in obj)
        max_r = max(r for r, c in obj)
        min_c = min(c for r, c in obj)
        max_c = max(c for r, c in obj)
        
        # Find a new fill color (incrementing the current color modulo 9 for variation)
        obj_color = grid[min_r][min_c]
        fill_color = (obj_color + 1) % 9 if obj_color + 1 != 0 else 1
        
        # Identify and fill the interior pixels of the object
        for r in range(min_r, max_r + 1):
            for c in range(min_c, max_c + 1):
                if (r, c) not in obj and grid[r][c] == 0:  # Empty space inside the object
                    new_grid[r][c] = fill_color
    
    return new_grid
def diamirror(input_grid):
    return np.transpose(input_grid)


import numpy as np

def get_object_bounds(grid):
    grid = np.array(grid)
    top, bottom = None, None
    for i in range(grid.shape[0]):
        if np.any(grid[i] != 0):
            if top is None:
                top = i
            bottom = i
    return top, bottom
def reverse_object_top_bottom(grid):
    grid = np.array(grid)
    top, bottom = get_object_bounds(grid)
    if top is None or bottom is None:
        return grid
    grid_copy = np.copy(grid)
    grid_copy[top:bottom+1] = np.flipud(grid[top:bottom+1])
    return grid_copy

def hmirror(input_grid: np.ndarray) -> np.ndarray:
    return np.fliplr(input_grid)

def vmirrors(input_grid: np.ndarray) -> np.ndarray:
    return np.flipud(input_grid)

def flip_horizontal(input_grid: np.ndarray) -> np.ndarray:
    return np.fliplr(input_grid)

def flip_vertical(input_grid: np.ndarray) -> np.ndarray:
    return np.flipud(input_grid)

def rotate_90(input_grid: np.ndarray) -> np.ndarray:
    return np.rot90(input_grid, k=-1)

def rotate_180(input_grid: np.ndarray) -> np.ndarray:
    return np.rot90(input_grid, k=2)

def rotate_270(input_grid: np.ndarray) -> np.ndarray:
    return np.rot90(input_grid, k=1)

def identity(input_grid: np.ndarray) -> np.ndarray:
    return input_grid
def find_center_pixel(grid):
    """Finds the center pixel of the input grid and returns it as a 1x1 output grid."""
    center_index = len(grid[0]) // 2  # Get the middle index
    return [[grid[0][center_index]]]  # Return as a 1x1 grid with the center pixel

# --- Object Detection and Manipulation ---
def detect_objects(grid):
    """Detects objects in the grid and returns a list of bounding boxes and pixel coordinates."""
    height, width = len(grid), len(grid[0])
    visited = set()
    objects = []

    def bfs(r, c, color):
        """Finds all pixels belonging to an object using BFS."""
        queue = [(r, c)]
        pixels = []  # Use a list instead of a set
        min_r, max_r, min_c, max_c = r, r, c, c

        while queue:
            x, y = queue.pop(0)
            if (x, y) in visited:
                continue
            visited.add((x, y))
            pixels.append((x, y))  # Append to list
            min_r, max_r = min(min_r, x), max(max_r, x)
            min_c, max_c = min(min_c, y), max(max_c, y)

            for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:  # Only vertical & horizontal connections
                nx, ny = x + dx, y + dy
                if (0 <= nx < height and 0 <= ny < width and (nx, ny) not in visited and grid[nx][ny] == color):
                    queue.append((nx, ny))

        return (min_r, max_r, min_c, max_c, color, pixels)  # Return tuple, pixels as a list

    for r in range(height):
        for c in range(width):
            if grid[r][c] != 0 and (r, c) not in visited:
                visited.add((r, c))
                objects.append(bfs(r, c, grid[r][c]))  # Append tuple to list

    return objects  # Ensure `objects` is a list, not a set

def extract_bottom_object(grid):
    """Extracts the bottom-most object from the grid, crops it, and returns it as a new grid."""
    objects = detect_objects(grid)
    if not objects:
        return grid  

    bottom_object = max(objects, key=lambda obj: obj[1])  # obj[1] is max_r
    min_r, max_r, min_c, max_c, obj_color, pixels = bottom_object
    cropped_height = max_r - min_r + 1
    cropped_width = max_c - min_c + 1
    cropped_grid = np.zeros((cropped_height, cropped_width), dtype=int)

    for r, c in pixels:
        cropped_grid[r - min_r, c - min_c] = obj_color  

    return cropped_grid.tolist()

def keep_bottom_object(grid):
    """Keeps only the bottom-most object and removes all others."""
    height, width = len(grid), len(grid[0])
    objects = detect_objects(grid)
    output_grid = np.zeros((height, width), dtype=int)

    if not objects:
        return output_grid.tolist()  

    bottom_object = max(objects, key=lambda obj: obj[1])  # obj[1] is max_r

    for r, c in bottom_object[5]:  # obj[5] contains pixels
        output_grid[r][c] = bottom_object[4]  # obj[4] is color

    return output_grid.tolist()

def recolor_to_bottom_object(grid):
    """Recolors all objects to match the color of the bottom-most object."""
    height, width = len(grid), len(grid[0])
    objects = detect_objects(grid)
    output_grid = np.array(grid)

    if not objects:
        return output_grid.tolist()  

    bottom_object = max(objects, key=lambda obj: obj[1])  # obj[1] is max_r
    bottom_color = bottom_object[4]  # obj[4] is color

    for min_r, max_r, min_c, max_c, obj_color, pixels in objects:
        for r, c in pixels:
            output_grid[r][c] = bottom_color  # Change to bottom-most object's color

    return output_grid.tolist()

def remove_top_bottom_objects(grid):
    """Removes objects that touch either the top or bottom of the grid."""
    height, width = len(grid), len(grid[0])
    objects = detect_objects(grid)
    output_grid = np.zeros((height, width), dtype=int)

    if not objects:
        return output_grid.tolist()  

    min_top = min(obj[0] for obj in objects)  
    max_bottom = max(obj[1] for obj in objects)  

    for (min_r, max_r, min_c, max_c, obj_color, pixels) in objects:
        if min_r == min_top or max_r == max_bottom:
            continue
        for r, c in pixels:
            output_grid[r][c] = obj_color

    return output_grid.tolist()

def extract_topmost_object(grid):
    """Extracts the top-most object from the grid, crops it, and returns it as a new grid."""
    objects = detect_objects(grid)
    if not objects:
        return grid  

    topmost_object = min(objects, key=lambda obj: obj[0])  # obj[0] is min_r
    min_r, max_r, min_c, max_c, obj_color, pixels = topmost_object
    cropped_height = max_r - min_r + 1
    cropped_width = max_c - min_c + 1
    cropped_grid = np.zeros((cropped_height, cropped_width), dtype=int)

    for r, c in pixels:
        cropped_grid[r - min_r, c - min_c] = obj_color  

    return cropped_grid.tolist()

def swap_objects(grid):
    """Swaps detected objects in the grid."""
    objects = detect_objects(grid)
    objects = sorted(objects, key=lambda obj: obj[1])  # Sort by vertical position

    object_positions = [obj[5] for obj in objects]  # obj[5] contains pixels
    object_colors = [obj[4] for obj in objects]  # obj[4] is color
    swapped_positions = object_positions[::-1]  

    new_grid = np.zeros_like(grid)
    for color, new_positions in zip(object_colors, swapped_positions):
        for r, c in new_positions:
            new_grid[r][c] = color

    return new_grid.tolist()

# --- Pixel & Color Manipulation ---
def transform_blue_to_red(input_grid):
    """Transforms all blue (1) pixels to red (2)."""
    grid = np.array(input_grid)
    return np.where(grid == 1, 2, grid).tolist()

def fill_downward(grid):
    """Fills non-zero pixels downward, propagating their colors downwards in each column."""
    height, width = len(grid), len(grid[0])
    output_grid = np.array(grid)

    for col in range(width):
        fill_color = 0  
        for row in range(height):
            if grid[row][col] != 0:
                fill_color = grid[row][col]  
            if fill_color != 0:
                output_grid[row][col] = fill_color  
    return output_grid.tolist()

def remove_below_horizontal_line(grid):
    """Detects the first fully connected horizontal line and removes everything below it."""
    height, width = len(grid), len(grid[0])
    output_grid = np.array(grid)

    for row in range(height):
        if np.all(output_grid[row] != 0):  
            output_grid[row + 1:] = 0
            break
    return output_grid.tolist()

def find_center_pixel(grid):
    """Finds the center of the grid and returns it as a 1x1 pixel grid."""
    center_index = len(grid[0]) // 2  
    return [[grid[0][center_index]]]

def extract_largest_row(grid):
    """Finds the row with the most non-zero elements and extracts it."""
    grid = np.array(grid)
    max_length = 0
    longest_row = []

    for row in grid:
        row_values = row[row > 0]  
        if len(row_values) > max_length:
            max_length = len(row_values)
            longest_row = row_values.tolist()  
    return [longest_row]

def extract_dominant_colors(grid):
    """Finds the two most dominant non-zero colors in the grid."""
    flattened = [cell for row in grid for cell in row if cell != 0]
    color_counts = Counter(flattened)

    if not color_counts:
        return [[]]  
    most_common_colors = [color for color, _ in color_counts.most_common(2)]
    return [[color for color in most_common_colors]]

def remove_dominant_color(grid):
    """Removes the most dominant color from the grid."""
    color_counts = Counter(cell for row in grid for cell in row if cell != 0)

    if color_counts:
        dominant_color = max(color_counts, key=color_counts.get)
    else:
        return grid  
    return [[0 if cell == dominant_color else cell for cell in row] for row in grid]

def find_least_dominant_pixel(grid):
    """Finds the least occurring non-zero pixel in the grid."""
    pixel_counts = {}

    for row in grid:
        for value in row:
            if value != 0:
                pixel_counts[value] = pixel_counts.get(value, 0) + 1

    if not pixel_counts:
        return None

    return min(pixel_counts, key=pixel_counts.get)

def remove_least_dominant_pixel(grid):
    """Removes the least dominant pixel from the grid."""
    rows, cols = len(grid), len(grid[0])
    least_dominant_pixel = find_least_dominant_pixel(grid)

    if least_dominant_pixel is None:
        return grid  

    new_grid = np.array(grid)
    for x in range(rows):
        for y in range(cols):
            if grid[x][y] == least_dominant_pixel:
                new_grid[x, y] = 0  
    return new_grid.tolist()

def upscale(input_grid, upscale_factor=3):
    """Upscales the grid by expanding each pixel into a 3x3 block."""
    def expand_pixel_with_grid(pixel, input_grid):
        if pixel == 0:
            return np.zeros((upscale_factor, upscale_factor), dtype=int)
        else:
            return input_grid

    input_rows, input_cols = len(input_grid), len(input_grid[0])
    output_grid = np.zeros((input_rows * upscale_factor, input_cols * upscale_factor), dtype=int)

    for r in range(input_rows):
        for c in range(input_cols):
            expanded_block = expand_pixel_with_grid(input_grid[r][c], input_grid)
            output_grid[r * upscale_factor: (r + 1) * upscale_factor, c * upscale_factor: (c + 1) * upscale_factor] = expanded_block
    
    return output_grid

def remove_center_object(grid):
    """Removes anything located at the center of the grid."""
    height, width = len(grid), len(grid[0])
    center_r, center_c = height // 2, width // 2
    grid = np.array(grid)

    center_value = grid[center_r, center_c]
    if center_value != 0:
        grid[grid == center_value] = 0  
    return grid.tolist()
import numpy as np

def draw_horizontal_vertical(grid):
    """Adds a horizontal or vertical line of 8s based on object orientation."""
    if grid is None or len(grid) == 0 or len(grid[0]) == 0:  
        print("ERROR: Grid is empty. Cannot apply draw_horizontal_vertical.")
        return grid  

    rows, cols = len(grid), len(grid[0])
    print(f"Grid Shape Before Modification: {rows}x{cols}")  # Debugging Info

    new_grid = np.array(grid)

    for r in range(rows):
        new_grid[r][-1] = 8  # Rightmost column

    for c in range(cols):
        new_grid[0][c] = 8  # Topmost row

    return new_grid.tolist()