Spaces:
Sleeping
Sleeping
File size: 5,050 Bytes
47dc822 aad52f9 47dc822 aad52f9 47dc822 aad52f9 47dc822 aad52f9 47dc822 aad52f9 47dc822 aad52f9 47dc822 aad52f9 47dc822 3064a09 47dc822 d18697e 47dc822 7444111 47dc822 7444111 47dc822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# Runs the full strong baseline, including smina/vina docking,
# gnina rescoring, and an input conformational ensemble.
import argparse
import os
import shutil
import subprocess
import pandas as pd
from rdkit import Chem
from rdkit.Chem import AllChem, PandasTools, rdMolTransforms
import numpy as np
from moleculekit.molecule import Molecule
import time
import gradio as gr
from gradio_molecule3d import Molecule3D
def protonate_receptor_and_ligand(protein):
protein_out = protein.replace(".pdb","_H.pdb")
with open(protein_out, "w") as f:
subprocess.run(
["reduce", "-BUILD", protein],
stdout=f,
stderr=subprocess.DEVNULL,
)
def generate_conformers(ligand, num_confs=8):
mol = Chem.MolFromSmiles(
ligand
)
mol.RemoveAllConformers()
mol = Chem.AddHs(mol)
AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, randomSeed=1)
AllChem.UFFOptimizeMoleculeConfs(mol)
with Chem.SDWriter(
"ligand.sdf"
) as writer:
for cid in range(mol.GetNumConformers()):
writer.write(mol, confId=cid)
def get_bb(points):
"""Return bounding box from a set of points (N,3)
Parameters
----------
points : numpy.ndarray
Set of points (N,3)
Returns
-------
boundingBox : list
List of the form [xmin, xmax, ymin, ymax, zmin, zmax]
"""
minx = np.min(points[:, 0])
maxx = np.max(points[:, 0])
miny = np.min(points[:, 1])
maxy = np.max(points[:, 1])
minz = np.min(points[:, 2])
maxz = np.max(points[:, 2])
bb = [[minx, miny, minz], [maxx, maxy, maxz]]
return bb
def run_docking(protein, ligand):
mol = Molecule(protein)
mol.center()
bb = get_bb(mol.coords)
size_x = bb[1][0] - bb[0][0]
size_y = bb[1][1] - bb[0][1]
size_z = bb[1][2] - bb[0][2]
subprocess.run(
[
"gnina",
"-r",
protein.replace(".pdb","_H.pdb"),
"-l",
"ligand.sdf",
"-o",
"ligand_output.sdf",
"--center_x", # bounding box matching PoseBusters methodology
str(0),
"--center_y",
str(0),
"--center_z",
str(0),
"--size_x",
str(size_x),
"--size_y",
str(size_y),
"--size_z",
str(size_z),
"--scoring",
"vina",
"--exhaustiveness",
"4",
"--num_modes",
"1",
"--seed",
"1",
]
)
# sort the poses from the multiple conformation runs, so overall best is first
poses = PandasTools.LoadSDF(
"ligand_output.sdf"
)
poses["CNNscore"] = poses["CNNscore"].astype(float)
gnina_order = poses.sort_values("CNNscore", ascending=False).reset_index(drop=True)
PandasTools.WriteSDF(
gnina_order,
"ligand_output.sdf",
properties=list(poses.columns),
)
return poses["CNNscore"]
def predict (input_sequence, input_ligand,input_msa, input_protein):
start_time = time.time()
protonate_receptor_and_ligand(input_protein)
generate_conformers(input_ligand)
cnn_score = run_docking(input_protein, input_ligand)
metrics = {"cnn_score": cnn_score}
end_time = time.time()
run_time = end_time - start_time
return [input_protein, "ligand_output.sdf"], metrics, run_time
with gr.Blocks() as app:
gr.Markdown("# Strong Docking Baseline")
gr.Markdown("Using the strong docking baseline from inductive bio described in their [blog post](https://www.inductive.bio/blog/strong-baseline-for-alphafold-3-docking)")
gr.Markdown("Note that in the original implementation the binding site is defined by the original ligand (redocking), here we use a bounding box of the protein for the docking (blind docking).")
with gr.Row():
input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)")
input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES")
with gr.Row():
input_msa = gr.File(label="Input Protein MSA (A3M)")
input_protein = gr.File(label="Input protein monomer")
# define any options here
# for automated inference the default options are used
# slider_option = gr.Slider(0,10, label="Slider Option")
# checkbox_option = gr.Checkbox(label="Checkbox Option")
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
btn = gr.Button("Run Inference")
reps = [
{
"model": 0,
"style": "cartoon",
"color": "whiteCarbon",
},
{
"model": 1,
"style": "stick",
"color": "greenCarbon",
}
]
out = Molecule3D(reps=reps)
metrics = gr.JSON(label="Metrics")
run_time = gr.Textbox(label="Runtime")
btn.click(predict, inputs=[input_sequence, input_ligand, input_msa, input_protein], outputs=[out,metrics, run_time])
app.launch() |