File size: 5,050 Bytes
47dc822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad52f9
47dc822
 
 
 
 
 
 
 
 
 
aad52f9
 
47dc822
 
 
 
 
 
aad52f9
47dc822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad52f9
47dc822
aad52f9
47dc822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad52f9
47dc822
 
 
 
 
aad52f9
47dc822
 
 
 
 
 
 
3064a09
 
47dc822
 
 
 
d18697e
47dc822
 
 
7444111
47dc822
7444111
 
47dc822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Runs the full strong baseline, including smina/vina docking,
# gnina rescoring, and an input conformational ensemble.
import argparse
import os
import shutil
import subprocess

import pandas as pd
from rdkit import Chem
from rdkit.Chem import AllChem, PandasTools, rdMolTransforms

import numpy as np
from moleculekit.molecule import Molecule

import time

import gradio as gr

from gradio_molecule3d import Molecule3D

def protonate_receptor_and_ligand(protein):
    protein_out = protein.replace(".pdb","_H.pdb")
    with open(protein_out, "w") as f:
        subprocess.run(
            ["reduce", "-BUILD", protein],
            stdout=f,
            stderr=subprocess.DEVNULL,
        )


def generate_conformers(ligand, num_confs=8):
    mol = Chem.MolFromSmiles(
         ligand
    )
    mol.RemoveAllConformers()
    mol = Chem.AddHs(mol)
    AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, randomSeed=1)
    AllChem.UFFOptimizeMoleculeConfs(mol)
    with Chem.SDWriter(
         "ligand.sdf"
    ) as writer:
        for cid in range(mol.GetNumConformers()):
            writer.write(mol, confId=cid)

def get_bb(points):
    """Return bounding box from a set of points (N,3)

    Parameters
    ----------
    points : numpy.ndarray
        Set of points (N,3)

    Returns
    -------
    boundingBox : list
        List of the form [xmin, xmax, ymin, ymax, zmin, zmax]

    """
    minx = np.min(points[:, 0])
    maxx = np.max(points[:, 0])

    miny = np.min(points[:, 1])
    maxy = np.max(points[:, 1])

    minz = np.min(points[:, 2])
    maxz = np.max(points[:, 2])
    bb = [[minx, miny, minz], [maxx, maxy, maxz]]
    return bb

def run_docking(protein, ligand):
    
    mol = Molecule(protein)
    mol.center()
    bb = get_bb(mol.coords)
    size_x = bb[1][0] - bb[0][0]
    size_y = bb[1][1] - bb[0][1]
    size_z = bb[1][2] - bb[0][2]

    subprocess.run(
        [
            "gnina",
            "-r",
            protein.replace(".pdb","_H.pdb"),
            "-l",
            "ligand.sdf",
            "-o",
            "ligand_output.sdf",
            "--center_x",  # bounding box matching PoseBusters methodology
            str(0),
            "--center_y",
            str(0),
            "--center_z",
            str(0),
            "--size_x",
            str(size_x),
            "--size_y",
            str(size_y),
            "--size_z",
            str(size_z),
            "--scoring",
            "vina",
            "--exhaustiveness",
            "4",
            "--num_modes",
            "1",
            "--seed",
            "1",
        ]
    )
    # sort the poses from the multiple conformation runs, so overall best is first
    poses = PandasTools.LoadSDF(
         "ligand_output.sdf"
    )
    poses["CNNscore"] = poses["CNNscore"].astype(float)
    gnina_order = poses.sort_values("CNNscore", ascending=False).reset_index(drop=True)
    PandasTools.WriteSDF(
        gnina_order,
        "ligand_output.sdf",
        properties=list(poses.columns),
    )
    return poses["CNNscore"]


def predict (input_sequence, input_ligand,input_msa, input_protein):
    start_time = time.time()
    protonate_receptor_and_ligand(input_protein)
    generate_conformers(input_ligand)
    cnn_score = run_docking(input_protein, input_ligand)
    metrics = {"cnn_score": cnn_score}
    end_time = time.time()
    run_time = end_time - start_time
    return [input_protein, "ligand_output.sdf"], metrics, run_time

with gr.Blocks() as app:

    gr.Markdown("# Strong Docking Baseline")

    gr.Markdown("Using the strong docking baseline from inductive bio described in their [blog post](https://www.inductive.bio/blog/strong-baseline-for-alphafold-3-docking)") 
    gr.Markdown("Note that in the original implementation the binding site is defined by the original ligand (redocking), here we use a bounding box of the protein for the docking (blind docking).")
    with gr.Row():
        input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)")
        input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES")
    with gr.Row():
        input_msa = gr.File(label="Input Protein MSA (A3M)")
        input_protein = gr.File(label="Input protein monomer")
        
    
    # define any options here

    # for automated inference the default options are used
    # slider_option = gr.Slider(0,10, label="Slider Option")
    # checkbox_option = gr.Checkbox(label="Checkbox Option")
    # dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")

    btn = gr.Button("Run Inference")

    reps =    [
    {
      "model": 0,
      "style": "cartoon",
      "color": "whiteCarbon",
    },
        {
      "model": 1,
      "style": "stick",
      "color": "greenCarbon",
    }
        
  ]
    
    out = Molecule3D(reps=reps)
    metrics = gr.JSON(label="Metrics")
    run_time = gr.Textbox(label="Runtime")

    btn.click(predict, inputs=[input_sequence, input_ligand, input_msa, input_protein], outputs=[out,metrics, run_time])

app.launch()