Spaces:
Configuration error
Configuration error
| # Fine-Tuned LLM API | |
| This is a FastAPI-based API service for the fine-tuned model "ManojINaik/Strength_weakness". The model is optimized for text generation with 4-bit quantization for efficient inference. | |
| ## API Endpoints | |
| ### GET / | |
| Health check endpoint that confirms the API is running. | |
| ### POST /generate/ | |
| Generate text based on a prompt with optional parameters. | |
| #### Request Body | |
| ```json | |
| { | |
| "prompt": "What are the strengths of Python?", | |
| "history": [], // Optional: List of previous conversation messages | |
| "system_prompt": "You are a very powerful AI assistant.", // Optional | |
| "max_length": 200, // Optional: Maximum length of generated text | |
| "temperature": 0.7 // Optional: Controls randomness (0.0 to 1.0) | |
| } | |
| ``` | |
| #### Response | |
| ```json | |
| { | |
| "response": "Generated text response..." | |
| } | |
| ``` | |
| ## Model Details | |
| - Base Model: ManojINaik/Strength_weakness | |
| - Quantization: 4-bit quantization using bitsandbytes | |
| - Device: Automatically uses GPU if available, falls back to CPU | |
| - Memory Efficient: Uses device mapping for optimal resource utilization | |
| ## Technical Details | |
| - Framework: FastAPI | |
| - Python Version: 3.9+ | |
| - Key Dependencies: | |
| - transformers | |
| - torch | |
| - bitsandbytes | |
| - accelerate | |
| - peft | |
| ## Example Usage | |
| ```python | |
| import requests | |
| url = "https://your-space-name.hf.space/generate" | |
| payload = { | |
| "prompt": "What are the strengths of Python?", | |
| "temperature": 0.7, | |
| "max_length": 200 | |
| } | |
| response = requests.post(url, json=payload) | |
| print(response.json()["response"]) | |
| ``` | |