LawyerApp / app.py
MansoorSarookh's picture
Update app.py
b96dcbe verified
raw
history blame
3.21 kB
import streamlit as st
from sentence_transformers import SentenceTransformer
from langchain.text_splitters import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from transformers import pipeline
from datasets import load_dataset
import torch
# Set up the Streamlit page configuration
st.set_page_config(page_title="Gen AI Lawyers Guide", layout="centered", page_icon="πŸ“„")
# Load summarization pipeline model
@st.cache_resource
def load_summarization_pipeline():
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Use a summarization model
return summarizer
summarizer = load_summarization_pipeline()
# Load the CaseHOLD dataset from Hugging Face
@st.cache_data
def load_casehold_dataset():
dataset = load_dataset("lex_glue", "case_hold", split="train") # Load CaseHOLD dataset
texts = [item["context"] for item in dataset]
return " ".join(texts)
# Split text into manageable chunks
@st.cache_data
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
chunks = text_splitter.split_text(text)
return chunks
# Initialize embedding model
@st.cache_resource
def load_embedding_model():
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
return model
embedding_model = load_embedding_model()
# Create a FAISS vector store with embeddings
@st.cache_resource
def load_or_create_vector_store(text_chunks):
embeddings = [embedding_model.encode(text) for text in text_chunks]
vector_store = FAISS.from_embeddings(embeddings, text_chunks) # FAISS setup with embeddings
return vector_store
# Generate summary based on the retrieved text
def generate_summary_with_huggingface(query, retrieved_text):
summarization_input = f"{query}\n\nRelated information:\n{retrieved_text}"
max_input_length = 1024
summarization_input = summarization_input[:max_input_length]
summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False)
return summary[0]["summary_text"]
# Generate response for user query
def user_input(user_question, vector_store):
docs = vector_store.similarity_search(user_question)
context_text = " ".join([doc.page_content for doc in docs])
return generate_summary_with_huggingface(user_question, context_text)
# Main function to run the Streamlit app
def main():
st.title("πŸ“„ Gen AI Lawyers Guide with CaseHOLD Dataset")
# Load CaseHOLD dataset
st.write("Loading the CaseHOLD dataset from Hugging Face's datasets library...")
raw_text = load_casehold_dataset()
text_chunks = get_text_chunks(raw_text)
vector_store = load_or_create_vector_store(text_chunks)
# User question input
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
if st.button("Get Response"):
if not user_question:
st.warning("Please enter a question before submitting.")
else:
with st.spinner("Generating response..."):
answer = user_input(user_question, vector_store)
st.markdown(f"**πŸ€– AI:** {answer}")
if __name__ == "__main__":
main()