Spaces:
Sleeping
Sleeping
File size: 12,414 Bytes
d903cfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ingesting GitHub data, please input the following information:\n",
"Ingesting GitHub data...\n",
"Ingesting files from the repository...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 75/75 [00:43<00:00, 1.73it/s]\n"
]
}
],
"source": [
"from cura import github_ingestion\n",
"from cura import vector_store\n",
"\n",
"print(\"Ingesting GitHub data, please input the following information:\")\n",
"url = \"MarkCodering/mindify-website\"\n",
"access_token = input(\"GitHub Access Token: \")\n",
"\n",
"print(\"Ingesting GitHub data...\")\n",
"github_repo_data = github_ingestion.ingest_github_repo(url, access_token)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Storing GitHub data in ChromaDB...\n"
]
}
],
"source": [
"collection_name = url.replace(\"/\", \"_\")\n",
"collection = vector_store.set_up_chromadb(collection_name)\n",
"ids = []\n",
"for i in range(len(github_repo_data[0])):\n",
" ids.append(str(i))\n",
" \n",
"print(\"Storing GitHub data in ChromaDB...\")\n",
"collection.add(ids=ids, documents=github_repo_data[0])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Querying the data from the vector store...\n",
"---\n",
"// @ts-ignore\n",
"const features = [\n",
" {\n",
" title: \"Learn AI Technologies\",\n",
" description:\n",
" \"We provide online and in-person training to help you learn the latest generative AI technologies.\",\n",
" },\n",
" {\n",
" title: \"Deploy AI Solutions\",\n",
" description:\n",
" \"We provide a platform for developers to deploy generative AI solutions in their projects.\",\n",
" },\n",
" {\n",
" title: \"Fast Prototyping and Concept Validation\",\n",
" description:\n",
" \"We help you quickly prototype and validate your AI concepts to bring them to market faster.\",\n",
" },\n",
"];\n",
"---\n",
"\n",
"<div class=\"mt-16 md:mt-0\">\n",
" <h2 class=\"text-4xl lg:text-5xl font-bold lg:tracking-tight text-center\">\n",
" About Mindify AI\n",
" </h2>\n",
" <p class=\"text-lg mt-4 text-slate-600\">\n",
" Mindify is an AI solution company that provides a platform for developers to\n",
" learn and deploy generative AI solutions. We deliver online and in-person\n",
" training to help you learn the latest AI technologies and deploy them in\n",
" your projects. Our mission is to help you bring your AI concepts to market\n",
" faster and deliver value to your customers.\n",
" </p>\n",
"</div>\n",
"\n",
"<div class=\"grid sm:grid-cols-2 md:grid-cols-3 mt-16 gap-16\">\n",
" {\n",
" features.map((item) => (\n",
" <div class=\"flex gap-4 items-start\">\n",
" <div>\n",
" <h3 class=\"font-semibold text-lg\">{item.title}</h3>{\" \"}\n",
" <p class=\"text-slate-500 mt-2 leading-relaxed\">{item.description}</p>\n",
" </div>\n",
" </div>\n",
" ))\n",
" }\n",
"</div>\n",
"\n"
]
}
],
"source": [
"# Query the data from the vector store\n",
"print(\"Querying the data from the vector store...\")\n",
"prompt = \"What is Mindify AI?\"\n",
"results = collection.query(\n",
" query_texts=[prompt], # Chroma will embed this for you\n",
" n_results=2 # how many results to return\n",
")\n",
"print(results[\"documents\"][0][0])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Asking OpenAI the following question: You are a smart and helpful AI programmer and here is the repository I am working on: MarkCodering/mindify-websiteAnd, I wonder if you can help me with the following question with the following question: What is Mindify AI?based on the data in the repository which is available here: ---\n",
"// @ts-ignore\n",
"const features = [\n",
" {\n",
" title: \"Learn AI Technologies\",\n",
" description:\n",
" \"We provide online and in-person training to help you learn the latest generative AI technologies.\",\n",
" },\n",
" {\n",
" title: \"Deploy AI Solutions\",\n",
" description:\n",
" \"We provide a platform for developers to deploy generative AI solutions in their projects.\",\n",
" },\n",
" {\n",
" title: \"Fast Prototyping and Concept Validation\",\n",
" description:\n",
" \"We help you quickly prototype and validate your AI concepts to bring them to market faster.\",\n",
" },\n",
"];\n",
"---\n",
"\n",
"<div class=\"mt-16 md:mt-0\">\n",
" <h2 class=\"text-4xl lg:text-5xl font-bold lg:tracking-tight text-center\">\n",
" About Mindify AI\n",
" </h2>\n",
" <p class=\"text-lg mt-4 text-slate-600\">\n",
" Mindify is an AI solution company that provides a platform for developers to\n",
" learn and deploy generative AI solutions. We deliver online and in-person\n",
" training to help you learn the latest AI technologies and deploy them in\n",
" your projects. Our mission is to help you bring your AI concepts to market\n",
" faster and deliver value to your customers.\n",
" </p>\n",
"</div>\n",
"\n",
"<div class=\"grid sm:grid-cols-2 md:grid-cols-3 mt-16 gap-16\">\n",
" {\n",
" features.map((item) => (\n",
" <div class=\"flex gap-4 items-start\">\n",
" <div>\n",
" <h3 class=\"font-semibold text-lg\">{item.title}</h3>{\" \"}\n",
" <p class=\"text-slate-500 mt-2 leading-relaxed\">{item.description}</p>\n",
" </div>\n",
" </div>\n",
" ))\n",
" }\n",
"</div>\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
}
],
"source": [
"from cura import openai_chat\n",
"\n",
"question = (\n",
" \"You are a smart and helpful AI programmer and here is the repository I am working on: {}\".format(\n",
" url\n",
" )\n",
" + \"And, I wonder if you can help me with the following question with the following question: {}\".format(\n",
" prompt\n",
" )\n",
" + \"based on the data in the repository which is available here: {}\".format(\n",
" results[\"documents\"][0][0]\n",
" )\n",
")\n",
"print(\"Asking OpenAI the following question: {}\".format(question))\n",
"\n",
"answer = openai_chat.ask_question(question)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Based on the provided data from the repository, Mindify AI is an AI solution company that focuses on providing a platform for developers to learn and deploy generative AI solutions. Here are the key aspects of Mindify AI:\n",
"\n",
"1. **Learning AI Technologies**: Mindify AI offers both online and in-person training to help individuals and developers learn the latest generative AI technologies.\n",
"\n",
"2. **Deploying AI Solutions**: The platform allows developers to deploy generative AI solutions in their projects, facilitating the integration of advanced AI capabilities.\n",
"\n",
"3. **Fast Prototyping and Concept Validation**: Mindify AI assists in quickly prototyping and validating AI concepts, enabling faster time-to-market for AI-driven products and solutions.\n",
"\n",
"The mission of Mindify AI is to help developers and businesses bring their AI concepts to market more quickly and deliver value to their customers through advanced AI technologies.\n",
"\n",
"Here is a summary of the features provided by Mindify AI:\n",
"- **Learn AI Technologies**: Training programs to learn the latest generative AI technologies.\n",
"- **Deploy AI Solutions**: A platform for deploying generative AI solutions in projects.\n",
"- **Fast Prototyping and Concept Validation**: Support for rapid prototyping and validation of AI concepts.\n",
"\n",
"Overall, Mindify AI aims to empower developers and businesses with the knowledge and tools needed to leverage generative AI effectively.\n"
]
}
],
"source": [
"print(answer.content)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mark/Documents/Mindify/CURA-alpha/.venv/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"\n",
"def echo(question):\n",
" # Query the collection with the provided question\n",
" results = collection.query(\n",
" query_texts=[question], # Chroma will embed this for you\n",
" n_results=1 # Number of results to return\n",
" )\n",
" \n",
" # Append the retrieved document to the question\n",
" question = question + results[\"documents\"][0][0]\n",
" \n",
" # Use OpenAI's chat to ask the modified question\n",
" answer = openai_chat.ask_question(question)\n",
" \n",
" # Return the content of the answer\n",
" return answer.content\n",
"\n",
"# Define the Gradio interface\n",
"iface = gr.Interface(\n",
" fn=echo,\n",
" inputs=gr.Textbox(lines=2, placeholder=\"Enter your question here...\"),\n",
" outputs=gr.Code(label=\"Answer\", language=\"markdown\"),\n",
")\n",
"\n",
"# Launch the Gradio interface\n",
"iface.launch()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|