Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
import re
|
| 2 |
-
from transformers import pipeline
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
ner_model = pipeline("ner", model="dbmdz/bert-base-multilingual-cased", aggregation_strategy="simple")
|
| 7 |
-
|
| 8 |
-
# Define categories and their associated keywords
|
| 9 |
CATEGORIES = {
|
| 10 |
"Need": {
|
| 11 |
"Utilities": ["dien", "nuoc", "gas", "internet", "dienthoai"],
|
|
@@ -19,7 +17,7 @@ CATEGORIES = {
|
|
| 19 |
},
|
| 20 |
"Want": {
|
| 21 |
"Dining Out": ["nha hang", "quan an", "cafe", "tra sua"],
|
| 22 |
-
"Entertainment": ["phim", "karaoke", "game", "nhac"],
|
| 23 |
"Travel": ["du lich", "ve may bay", "khach san"],
|
| 24 |
"Fitness": ["gym", "yoga", "the thao"],
|
| 25 |
"Shopping": ["quan ao", "phu kien", "dien thoai", "luxury"],
|
|
@@ -39,9 +37,19 @@ CATEGORIES = {
|
|
| 39 |
|
| 40 |
# Normalize Vietnamese input (remove accents)
|
| 41 |
def normalize_vietnamese(text):
|
| 42 |
-
return re.sub(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
#
|
| 45 |
def classify_and_extract(user_input):
|
| 46 |
normalized_input = normalize_vietnamese(user_input.lower())
|
| 47 |
|
|
@@ -49,10 +57,7 @@ def classify_and_extract(user_input):
|
|
| 49 |
amount_match = re.search(r"(\d+(\.\d{1,2})?)", normalized_input)
|
| 50 |
amount = amount_match.group(0) if amount_match else "Unknown"
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
ner_results = ner_model(user_input)
|
| 54 |
-
|
| 55 |
-
# Match keywords for categories
|
| 56 |
for main_category, subcategories in CATEGORIES.items():
|
| 57 |
for subcategory, keywords in subcategories.items():
|
| 58 |
if any(keyword in normalized_input for keyword in keywords):
|
|
@@ -60,10 +65,11 @@ def classify_and_extract(user_input):
|
|
| 60 |
"Main Category": main_category,
|
| 61 |
"Sub Category": subcategory,
|
| 62 |
"Amount": amount,
|
| 63 |
-
"Entities":
|
| 64 |
}
|
| 65 |
|
| 66 |
-
#
|
|
|
|
| 67 |
return {
|
| 68 |
"Main Category": "Uncategorized",
|
| 69 |
"Sub Category": "Unknown",
|
|
@@ -89,4 +95,4 @@ iface = gr.Interface(
|
|
| 89 |
description="Classify expenditures into main and subcategories (Need, Want, Saving/Investment) and extract amounts."
|
| 90 |
)
|
| 91 |
|
| 92 |
-
iface.launch()
|
|
|
|
| 1 |
import re
|
| 2 |
+
from transformers import pipeline, AutoTokenizer
|
| 3 |
+
from optimum.onnxruntime import ORTModelForTokenClassification
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
# Define categories and their keywords
|
|
|
|
|
|
|
|
|
|
| 7 |
CATEGORIES = {
|
| 8 |
"Need": {
|
| 9 |
"Utilities": ["dien", "nuoc", "gas", "internet", "dienthoai"],
|
|
|
|
| 17 |
},
|
| 18 |
"Want": {
|
| 19 |
"Dining Out": ["nha hang", "quan an", "cafe", "tra sua"],
|
| 20 |
+
"Entertainment": ["phim", "karaoke", "game", "nhac", "do choi", "bup be"],
|
| 21 |
"Travel": ["du lich", "ve may bay", "khach san"],
|
| 22 |
"Fitness": ["gym", "yoga", "the thao"],
|
| 23 |
"Shopping": ["quan ao", "phu kien", "dien thoai", "luxury"],
|
|
|
|
| 37 |
|
| 38 |
# Normalize Vietnamese input (remove accents)
|
| 39 |
def normalize_vietnamese(text):
|
| 40 |
+
return re.sub(
|
| 41 |
+
r'[àáạảãâầấậẩẫăằắặẳẵèéẹẻẽêềếệểễìíịỉĩòóọỏõôồốộổỗơờớợởỡùúụủũưừứựửữỳýỵỷỹđ]', '', text
|
| 42 |
+
).replace("đ", "d")
|
| 43 |
+
|
| 44 |
+
# Load and quantize the model
|
| 45 |
+
model_name = "distilbert-base-multilingual-cased"
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 47 |
+
quantized_model = ORTModelForTokenClassification.from_pretrained(model_name, from_transformers=True)
|
| 48 |
+
|
| 49 |
+
# Create the NER pipeline with the quantized model
|
| 50 |
+
ner_model = pipeline("ner", model=quantized_model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 51 |
|
| 52 |
+
# Classify input
|
| 53 |
def classify_and_extract(user_input):
|
| 54 |
normalized_input = normalize_vietnamese(user_input.lower())
|
| 55 |
|
|
|
|
| 57 |
amount_match = re.search(r"(\d+(\.\d{1,2})?)", normalized_input)
|
| 58 |
amount = amount_match.group(0) if amount_match else "Unknown"
|
| 59 |
|
| 60 |
+
# Rule-based matching for categories
|
|
|
|
|
|
|
|
|
|
| 61 |
for main_category, subcategories in CATEGORIES.items():
|
| 62 |
for subcategory, keywords in subcategories.items():
|
| 63 |
if any(keyword in normalized_input for keyword in keywords):
|
|
|
|
| 65 |
"Main Category": main_category,
|
| 66 |
"Sub Category": subcategory,
|
| 67 |
"Amount": amount,
|
| 68 |
+
"Entities": [] # Skip NER if matched via rules
|
| 69 |
}
|
| 70 |
|
| 71 |
+
# Fallback to NER model for unmatched cases
|
| 72 |
+
ner_results = ner_model(user_input)
|
| 73 |
return {
|
| 74 |
"Main Category": "Uncategorized",
|
| 75 |
"Sub Category": "Unknown",
|
|
|
|
| 95 |
description="Classify expenditures into main and subcategories (Need, Want, Saving/Investment) and extract amounts."
|
| 96 |
)
|
| 97 |
|
| 98 |
+
iface.launch()
|