Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,671 Bytes
77b8f3c 55737cf 77b8f3c 55737cf 77b8f3c 55737cf 77b8f3c 3a1cf13 77b8f3c 61fff43 77b8f3c 55737cf 77b8f3c 3a1cf13 77b8f3c 547adee 55737cf 61fff43 77b8f3c 3a1cf13 77b8f3c 3a1cf13 77b8f3c 3a1cf13 77b8f3c 547adee 61fff43 77b8f3c 13032ef 77b8f3c 3a1cf13 77b8f3c 3a1cf13 77b8f3c 3a1cf13 77b8f3c 3a1cf13 77b8f3c 3a1cf13 77b8f3c 3a1cf13 77b8f3c 55737cf 77b8f3c 3a1cf13 77b8f3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import re
import threading
import gradio as gr
import spaces
import transformers
from transformers import pipeline
# loading model and tokenizer
model_name = "Qwen/Qwen2-1.5B-Instruct"
if gr.NO_RELOAD:
pipe = pipeline(
"text-generation",
model=model_name,
device_map="auto",
torch_dtype="auto",
)
# the answer marker to detect final answer
ANSWER_MARKER = "**ANSWER**"
# the sentences starting the reasoning step by step
rethink_prepends = [
"OK, I need to figure out ",
"I think ",
"Wait, I think ",
"Let me check if ",
"I should also remember that ",
"Another thing to note is that ",
"I also recall that ",
"I think I have a good grasp ",
"Now, using all the above information, I can answer the question using the original language used for the question:"
"\n{question}\n"
f"\n{ANSWER_MARKER}\n",
]
# to fix some problems with math display
latex_delimiters = [
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
]
def reformat_math(text):
"""Fix MathJax delimiters to use the Gradio syntax (Katex).
This is a workaround to display math formulas in Gradio. For now, I havn't found a way to
make it work as expected using others latex_delimiters...
"""
text = re.sub(r"\\\[\s*(.*?)\s*\\\]", r"$$\1$$", text, flags=re.DOTALL)
text = re.sub(r"\\\(\s*(.*?)\s*\\\)", r"$\1$", text, flags=re.DOTALL)
return text
def user_input(message, history: list):
"""Append the user input in the history and clean the input textbox"""
return "", history + [
gr.ChatMessage(role="user", content=message.replace(ANSWER_MARKER, ""))
]
def rebuild_messages(history: list):
"""Rebuid the messages from the history to be used by the model without the intermediate thoughs"""
messages = []
for h in history:
if isinstance(h, dict) and not h.get("metadata", {}).get("title", False):
messages.append(h)
elif (
isinstance(h, gr.ChatMessage)
and h.metadata.get("title")
and isinstance(h.content, str)
):
messages.append({"role": h.role, "content": h.content})
return messages
@spaces.GPU
def bot(
history: list,
max_num_tokens: int,
final_num_tokens: int,
do_sample: bool,
temperature: float,
):
"""Make the model answering the question"""
# to get token as a stream, later in a thread
streamer = transformers.TextIteratorStreamer(
pipe.tokenizer, # pyright: ignore
skip_special_tokens=True,
skip_prompt=True,
)
# to reinsert the question in the reasoning if needed
question = history[-1]["content"]
# prepare the assistant message
history.append(
gr.ChatMessage(
role="assistant",
content=str(""),
metadata={"title": "🧠 Thinking...", "status": "pending"},
)
)
# for the moment, make the reasoning to be displayed in the chat
messages = rebuild_messages(history)
for i, prepend in enumerate(rethink_prepends):
if i > 0:
messages[-1]["content"] += "\n\n"
messages[-1]["content"] += prepend.format(question=question)
num_tokens = int(
max_num_tokens if ANSWER_MARKER not in prepend else final_num_tokens
)
t = threading.Thread(
target=pipe,
args=(messages,),
kwargs=dict(
max_new_tokens=num_tokens,
streamer=streamer,
do_sample=do_sample,
temperature=temperature,
),
)
t.start()
# rebuild the history with the new content
history[-1].content += prepend.format(question=question)
if ANSWER_MARKER in prepend:
history[-1].metadata = {"title": "💭 Thoughs", "status": "done"}
# stop thinking, this is the answer now (no metadata for intermediate steps)
history.append(gr.ChatMessage(role="assistant", content=""))
for token in streamer:
history[-1].content += token
history[-1].content = reformat_math(history[-1].content)
yield history
t.join()
yield history
with gr.Blocks(fill_height=True, title="Making any LLM model reasoning") as demo:
with gr.Row(scale=1):
with gr.Column(scale=5):
gr.Markdown(f"""
# Force reasoning for any LLM
This is a simple proof-of-concept to get any LLM (Large language Model) to reason ahead of its response.
This interface uses *{model_name}* model **which is not a reasoning model**. The used method
is only to force some "reasoning" steps with prefixes to help the model to enhance the answer.
See my related article here: [Make any model reasoning](https://huggingface.co/blog/Metal3d/making-any-model-reasoning)
""")
chatbot = gr.Chatbot(
scale=1,
type="messages",
latex_delimiters=latex_delimiters,
)
msg = gr.Textbox(
submit_btn=True,
label="",
show_label=False,
placeholder="Type your question here.",
autofocus=True,
)
with gr.Column(scale=1):
gr.Markdown("""## Tweaking""")
num_tokens = gr.Slider(
50,
1024,
100,
step=1,
label="Max tokens per reasoning step",
interactive=True,
)
final_num_tokens = gr.Slider(
50,
1024,
512,
step=1,
label="Max token for the final answer",
interactive=True,
)
do_sample = gr.Checkbox(True, label="Do sample")
temperature = gr.Slider(0.1, 1.0, 0.7, step=0.1, label="Temperature")
gr.Markdown("""
Using smaller number of tokens in the reasoning steps will make the model
faster to answer, but it may not be able to go deep enough in its reasoning.
A good value is 100 to 512.
Using smaller number of tokens for the final answer will make the model
to be less verbose, but it may not be able to give a complete answer.
A good value is 512 to 1024.
**Do sample** uses another strategie to select the next token to complete the
answer. It's commonly better to leave it checked.
**Temperature** indicates how much the model could be "creative". 0.7 is a common value.
If you set a too high value (like 1.0) the model could be incoherent. With a low value
(like 0.3), the model will produce very predictives answers.
""")
gr.Markdown("""
This interface can work on personal computer with 6Go VRAM (e.g. NVidia 3050/3060 on laptop).
Feel free to fork the application and try others instruct models.
""")
# when the user submit a message, the bot will answer
msg.submit(
user_input,
[msg, chatbot], # inputs
[msg, chatbot], # outputs
).then(
bot,
[
chatbot,
num_tokens,
final_num_tokens,
do_sample,
temperature,
], # actually, the "history" input
chatbot, # to store the new history from the output
)
if __name__ == "__main__":
demo.queue().launch()
|