Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import os | |
from PIL import Image | |
import numpy as np | |
from diffusers import StableDiffusionDepth2ImgPipeline | |
from pathlib import Path | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
is_gpu_associated = torch.cuda.is_available() | |
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-depth", | |
torch_dtype=torch.float16, | |
).to(device) | |
css = ''' | |
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} | |
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important} | |
#component-4, #component-3, #component-10{min-height: 0} | |
.duplicate-button img{margin: 0} | |
''' | |
def pad_image(input_image): | |
pad_w, pad_h = np.max(((2, 2), np.ceil( | |
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size | |
im_padded = Image.fromarray( | |
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) | |
w, h = im_padded.size | |
if w == h: | |
return im_padded | |
elif w > h: | |
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0)) | |
new_image.paste(im_padded, (0, (w - h) // 2)) | |
return new_image | |
else: | |
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0)) | |
new_image.paste(im_padded, ((h - w) // 2, 0)) | |
return new_image | |
def predict(input_image, prompt, negative_prompt, steps, num_samples, scale, seed, strength, depth_image=None): | |
if not is_gpu_associated: | |
raise gr.Error("Please associate a T4 GPU for this Space") | |
torch.cuda.empty_cache() | |
depth = None | |
if depth_image is not None: | |
depth_image = pad_image(depth_image) | |
depth_image = depth_image.resize((512, 512)) | |
depth = np.array(depth_image.convert("L")) | |
depth = depth.astype(np.float32) / 255.0 | |
depth = depth[None, None] | |
depth = torch.from_numpy(depth) | |
init_image = input_image.convert("RGB") | |
image = pad_image(init_image) # resize to integer multiple of 32 | |
image = image.resize((512, 512)) | |
result = dept2img( | |
image=image, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
depth_image=depth, | |
seed=seed, | |
strength=strength, | |
num_inference_steps=steps, | |
guidance_scale=scale, | |
num_images_per_prompt=num_samples, | |
) | |
return result['images'] | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Box(): | |
if is_gpu_associated: | |
top_description = gr.HTML(f''' | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<div> | |
<img class="logo" src="file/mirage.png" alt="Mirage Logo" | |
style="margin: auto; max-width: 7rem;"> | |
<br /> | |
<h1 style="font-weight: 900; font-size: 2.5rem;"> | |
Depth2Img Web UI | |
</h1> | |
<br /> | |
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/depth2img?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> | |
</div> | |
<br /> | |
<br /> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Create variations of an image while preserving shape and depth! | |
</p> | |
</div> | |
''') | |
else: | |
top_description = gr.HTML(f''' | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<div> | |
<img class="logo" src="file/mirage.png" alt="Mirage Logo" | |
style="margin: auto; max-width: 7rem;"> | |
<br /> | |
<h1 style="font-weight: 900; font-size: 2.5rem;"> | |
Depth2Img Web UI | |
</h1> | |
<br /> | |
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/depth2img?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> | |
</div> | |
<br /> | |
<br /> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Create variations of an image while preserving shape and depth! | |
</p> | |
<br /> | |
<p>There's only one step left before you can run the app: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4 GPU</b> to it (via the Settings tab)</a> and run the app below. You will be billed by the minute from when you activate the GPU until it is turned it off.</p> | |
</div> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="pil") | |
# depth_image = gr.Image( | |
# source='upload', type="pil", label="Depth image Optional", value=None) | |
depth_image = None | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative Pompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider( | |
label="Images", minimum=1, maximum=4, value=1, step=1) | |
steps = gr.Slider(label="Steps", minimum=1, | |
maximum=100, value=50, step=1) | |
scale = gr.Slider( | |
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1 | |
) | |
strength = gr.Slider( | |
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=2147483647, | |
step=1, | |
randomize=True, | |
) | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False).style( | |
grid=[2], height="auto") | |
if is_gpu_associated: | |
gr.Examples( | |
examples=[ | |
["./examples/original_iso.png", "hogwarts castle", | |
"", 50, 4, 10.0, 123123123, 0.8], | |
["./examples/original_sword.png", "flaming sword", | |
"", 50, 4, 9.0, 1734133747, 0.8], | |
], | |
inputs=[input_image, prompt, negative_prompt, steps, | |
num_samples, scale, seed, strength], | |
outputs=[gallery], | |
fn=predict, | |
cache_examples=True, | |
) | |
run_button.click(fn=predict, inputs=[input_image, prompt, negative_prompt, | |
steps, num_samples, scale, seed, strength], outputs=[gallery]) | |
block.launch(show_api=False) |