###TEST03 JUSTE CHARGER FLUX-SCHNELL | |
###https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell/blob/main/app.py | |
### | |
import os | |
import gradio as gr | |
from huggingface_hub import login | |
from diffusers import FluxPipeline | |
import torch | |
from PIL import Image | |
import fitz # PyMuPDF pour la gestion des PDF | |
import sentencepiece | |
import numpy as np | |
import random | |
import spaces | |
# | |
#import gradio as gr | |
#import numpy as np | |
#import random | |
#import spaces | |
#import torch | |
#from diffusers import DiffusionPipeline | |
# | |
#dtype = torch.bfloat16 | |
#device = "cuda" if torch.cuda.is_available() else "cpu" | |
# | |
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
# | |
#MAX_SEED = np.iinfo(np.int32).max | |
#MAX_IMAGE_SIZE = 2048 | |
# | |
#@spaces.GPU() | |
#def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt = prompt, | |
# width = width, | |
# height = height, | |
# num_inference_steps = num_inference_steps, | |
# generator = generator, | |
# guidance_scale=0.0 | |
# ).images[0] | |
# return image, seed | |
# | |
#examples = [ | |
# "a tiny astronaut hatching from an egg on the moon", | |
# "a cat holding a sign that says hello world", | |
# "an anime illustration of a wiener schnitzel", | |
#] | |
# | |
#css=""" | |
##col-container { | |
# margin: 0 auto; | |
# max-width: 520px; | |
#} | |
#""" | |
# | |
#with gr.Blocks(css=css) as demo: | |
# | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(f"""# FLUX.1 [schnell] | |
#12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation | |
#[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] | |
# """) | |
# | |
# with gr.Row(): | |
# | |
# prompt = gr.Text( | |
# label="Prompt", | |
# show_label=False, | |
# max_lines=1, | |
# placeholder="Enter your prompt", | |
# container=False, | |
# ) | |
# | |
# run_button = gr.Button("Run", scale=0) | |
# | |
# result = gr.Image(label="Result", show_label=False) | |
# | |
# with gr.Accordion("Advanced Settings", open=False): | |
# | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# | |
# with gr.Row(): | |
# | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, | |
# ) | |
# | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, | |
# ) | |
# | |
# with gr.Row(): | |
# | |
# | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=50, | |
# step=1, | |
# value=4, | |
# ) | |
# | |
# gr.Examples( | |
# examples = examples, | |
# fn = infer, | |
# inputs = [prompt], | |
# outputs = [result, seed], | |
# cache_examples="lazy" | |
# ) | |
# | |
# gr.on( | |
# triggers=[run_button.click, prompt.submit], | |
# fn = infer, | |
# inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], | |
# outputs = [result, seed] | |
# ) | |
# | |
#demo.launch() | |
# | |
# | |
# Force l'utilisation du CPU pour tout PyTorch | |
#torch.set_default_device("cpu") | |
#dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# | |
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
def load_pdf(pdf_path): | |
"""Traite le texte d'un fichier PDF""" | |
if pdf_path is None: | |
return None | |
text = "" | |
try: | |
doc = fitz.open(pdf_path) | |
for page in doc: | |
text += page.get_text() | |
doc.close() | |
return text | |
except Exception as e: | |
print(f"Erreur lors de la lecture du PDF: {str(e)}") | |
return None | |
class FluxGenerator: | |
def __init__(self): | |
self.token = os.getenv('Authentification_HF') | |
if not self.token: | |
raise ValueError("Token d'authentification HuggingFace non trouvé") | |
login(self.token) | |
self.pipeline = None | |
self.device = "cpu" # Force l'utilisation du CPU | |
self.load_model() | |
def load_model(self): | |
"""Charge le modèle FLUX avec des paramètres optimisés pour CPU""" | |
try: | |
print("Chargement du modèle FLUX sur CPU...") | |
# Configuration spécifique pour CPU | |
torch.set_grad_enabled(False) # Désactive le calcul des gradients | |
self.pipeline = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
revision="refs/pr/1", | |
torch_dtype=torch.float32 # Utilise float32 au lieu de bfloat16 pour meilleure compatibilité CPU | |
) | |
# device_map={"cpu": self.device} # Force tous les composants sur CPU | |
# )device | |
# Désactive les optimisations GPU | |
self.pipeline.to(self.device) | |
print(f"Utilisation forcée du CPU") | |
print("Modèle FLUX chargé avec succès!") | |
except Exception as e: | |
print(f"Erreur lors du chargement du modèle: {str(e)}") | |
raise | |
def generate_image(self, prompt, reference_image=None, pdf_file=None): | |
"""Génère une image à partir d'un prompt et optionnellement une référence""" | |
try: | |
# Si un PDF est fourni, ajoute son contenu au prompt | |
if pdf_file is not None: | |
pdf_text = load_pdf(pdf_file) | |
if pdf_text: | |
prompt = f"{prompt}\nContexte du PDF:\n{pdf_text}" | |
# Configuration pour génération sur CPU | |
with torch.no_grad(): # Désactive le calcul des gradients pendant la génération | |
image = self.pipeline( | |
prompt=prompt, | |
num_inference_steps=20, # Réduit le nombre d'étapes pour accélérer sur CPU | |
guidance_scale=0.0, | |
max_sequence_length=256, | |
generator=torch.Generator(device=self.device).manual_seed(0) | |
).images[0] | |
return image | |
except Exception as e: | |
print(f"Erreur lors de la génération de l'image: {str(e)}") | |
return None | |
# Instance globale du générateur | |
generator = FluxGenerator() | |
def generate(prompt, reference_file): | |
"""Fonction de génération pour l'interface Gradio""" | |
try: | |
# Gestion du fichier de référence | |
if reference_file is not None: | |
if isinstance(reference_file, dict): # Si le fichier est fourni par Gradio | |
file_path = reference_file.name | |
else: # Si c'est un chemin direct | |
file_path = reference_file | |
file_type = file_path.split('.')[-1].lower() | |
if file_type in ['pdf']: | |
return generator.generate_image(prompt, pdf_file=file_path) | |
elif file_type in ['png', 'jpg', 'jpeg']: | |
return generator.generate_image(prompt, reference_image=file_path) | |
# Génération sans référence | |
return generator.generate_image(prompt) | |
except Exception as e: | |
print(f"Erreur détaillée: {str(e)}") | |
return None | |
# Interface Gradio simple | |
demo = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Décrivez l'image que vous souhaitez générer..."), | |
gr.File(label="Image ou PDF de référence (optionnel)", type="file") | |
], | |
outputs=gr.Image(label="Image générée"), | |
title="Test du modèle FLUX (CPU)", | |
description="Interface simple pour tester la génération d'images avec FLUX (optimisé pour CPU)" | |
) | |
if __name__ == "__main__": | |
demo.launch() |