Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
-
|
2 |
-
###https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell/blob/main/app.py
|
3 |
-
###
|
4 |
import os
|
5 |
import gradio as gr
|
6 |
from huggingface_hub import login
|
@@ -8,186 +6,18 @@ from diffusers import FluxPipeline
|
|
8 |
import torch
|
9 |
from PIL import Image
|
10 |
import fitz # PyMuPDF pour la gestion des PDF
|
11 |
-
import
|
12 |
-
|
13 |
-
import numpy as np
|
14 |
-
import random
|
15 |
-
import spaces
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
#import gradio as gr
|
23 |
-
#import numpy as np
|
24 |
-
#import random
|
25 |
-
#import spaces
|
26 |
-
#import torch
|
27 |
-
#from diffusers import DiffusionPipeline
|
28 |
-
#
|
29 |
-
#dtype = torch.bfloat16
|
30 |
-
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
-
#
|
32 |
-
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
33 |
-
#
|
34 |
-
#MAX_SEED = np.iinfo(np.int32).max
|
35 |
-
#MAX_IMAGE_SIZE = 2048
|
36 |
-
#
|
37 |
-
#@spaces.GPU()
|
38 |
-
#def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
39 |
-
# if randomize_seed:
|
40 |
-
# seed = random.randint(0, MAX_SEED)
|
41 |
-
# generator = torch.Generator().manual_seed(seed)
|
42 |
-
# image = pipe(
|
43 |
-
# prompt = prompt,
|
44 |
-
# width = width,
|
45 |
-
# height = height,
|
46 |
-
# num_inference_steps = num_inference_steps,
|
47 |
-
# generator = generator,
|
48 |
-
# guidance_scale=0.0
|
49 |
-
# ).images[0]
|
50 |
-
# return image, seed
|
51 |
-
#
|
52 |
-
#examples = [
|
53 |
-
# "a tiny astronaut hatching from an egg on the moon",
|
54 |
-
# "a cat holding a sign that says hello world",
|
55 |
-
# "an anime illustration of a wiener schnitzel",
|
56 |
-
#]
|
57 |
-
#
|
58 |
-
#css="""
|
59 |
-
##col-container {
|
60 |
-
# margin: 0 auto;
|
61 |
-
# max-width: 520px;
|
62 |
-
#}
|
63 |
-
#"""
|
64 |
-
#
|
65 |
-
#with gr.Blocks(css=css) as demo:
|
66 |
-
#
|
67 |
-
# with gr.Column(elem_id="col-container"):
|
68 |
-
# gr.Markdown(f"""# FLUX.1 [schnell]
|
69 |
-
#12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
|
70 |
-
#[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
71 |
-
# """)
|
72 |
-
#
|
73 |
-
# with gr.Row():
|
74 |
-
#
|
75 |
-
# prompt = gr.Text(
|
76 |
-
# label="Prompt",
|
77 |
-
# show_label=False,
|
78 |
-
# max_lines=1,
|
79 |
-
# placeholder="Enter your prompt",
|
80 |
-
# container=False,
|
81 |
-
# )
|
82 |
-
#
|
83 |
-
# run_button = gr.Button("Run", scale=0)
|
84 |
-
#
|
85 |
-
# result = gr.Image(label="Result", show_label=False)
|
86 |
-
#
|
87 |
-
# with gr.Accordion("Advanced Settings", open=False):
|
88 |
-
#
|
89 |
-
# seed = gr.Slider(
|
90 |
-
# label="Seed",
|
91 |
-
# minimum=0,
|
92 |
-
# maximum=MAX_SEED,
|
93 |
-
# step=1,
|
94 |
-
# value=0,
|
95 |
-
# )
|
96 |
-
#
|
97 |
-
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
#
|
99 |
-
# with gr.Row():
|
100 |
-
#
|
101 |
-
# width = gr.Slider(
|
102 |
-
# label="Width",
|
103 |
-
# minimum=256,
|
104 |
-
# maximum=MAX_IMAGE_SIZE,
|
105 |
-
# step=32,
|
106 |
-
# value=1024,
|
107 |
-
# )
|
108 |
-
#
|
109 |
-
# height = gr.Slider(
|
110 |
-
# label="Height",
|
111 |
-
# minimum=256,
|
112 |
-
# maximum=MAX_IMAGE_SIZE,
|
113 |
-
# step=32,
|
114 |
-
# value=1024,
|
115 |
-
# )
|
116 |
-
#
|
117 |
-
# with gr.Row():
|
118 |
-
#
|
119 |
-
#
|
120 |
-
# num_inference_steps = gr.Slider(
|
121 |
-
# label="Number of inference steps",
|
122 |
-
# minimum=1,
|
123 |
-
# maximum=50,
|
124 |
-
# step=1,
|
125 |
-
# value=4,
|
126 |
-
# )
|
127 |
-
#
|
128 |
-
# gr.Examples(
|
129 |
-
# examples = examples,
|
130 |
-
# fn = infer,
|
131 |
-
# inputs = [prompt],
|
132 |
-
# outputs = [result, seed],
|
133 |
-
# cache_examples="lazy"
|
134 |
-
# )
|
135 |
-
#
|
136 |
-
# gr.on(
|
137 |
-
# triggers=[run_button.click, prompt.submit],
|
138 |
-
# fn = infer,
|
139 |
-
# inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
|
140 |
-
# outputs = [result, seed]
|
141 |
-
# )
|
142 |
-
#
|
143 |
-
#demo.launch()
|
144 |
-
#
|
145 |
-
#
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
# Force l'utilisation du CPU pour tout PyTorch
|
173 |
-
#torch.set_default_device("cpu")
|
174 |
-
|
175 |
-
|
176 |
-
#dtype = torch.bfloat16
|
177 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
178 |
-
#
|
179 |
-
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
|
|
|
|
|
|
|
|
|
190 |
|
|
|
|
|
|
|
|
|
191 |
|
192 |
def load_pdf(pdf_path):
|
193 |
"""Traite le texte d'un fichier PDF"""
|
@@ -211,69 +41,90 @@ class FluxGenerator:
|
|
211 |
raise ValueError("Token d'authentification HuggingFace non trouvé")
|
212 |
login(self.token)
|
213 |
self.pipeline = None
|
214 |
-
self.device = "cpu"
|
215 |
self.load_model()
|
216 |
|
217 |
def load_model(self):
|
218 |
-
"""Charge le modèle FLUX avec des paramètres optimisés pour
|
219 |
try:
|
220 |
-
print("Chargement du modèle FLUX
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
self.pipeline = FluxPipeline.from_pretrained(
|
225 |
"black-forest-labs/FLUX.1-schnell",
|
226 |
revision="refs/pr/1",
|
227 |
-
|
|
|
228 |
)
|
229 |
-
|
230 |
-
#
|
231 |
-
|
232 |
-
#
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
237 |
except Exception as e:
|
238 |
print(f"Erreur lors du chargement du modèle: {str(e)}")
|
239 |
raise
|
240 |
|
241 |
def generate_image(self, prompt, reference_image=None, pdf_file=None):
|
242 |
-
"""Génère une image
|
243 |
try:
|
244 |
-
# Si un PDF est fourni, ajoute son contenu au prompt
|
245 |
if pdf_file is not None:
|
246 |
pdf_text = load_pdf(pdf_file)
|
247 |
if pdf_text:
|
248 |
prompt = f"{prompt}\nContexte du PDF:\n{pdf_text}"
|
249 |
|
250 |
-
#
|
251 |
-
with torch.no_grad():
|
252 |
image = self.pipeline(
|
253 |
prompt=prompt,
|
254 |
-
num_inference_steps=
|
|
|
|
|
255 |
guidance_scale=0.0,
|
256 |
-
max_sequence_length=
|
257 |
generator=torch.Generator(device=self.device).manual_seed(0)
|
258 |
).images[0]
|
259 |
|
260 |
-
|
|
|
|
|
|
|
|
|
261 |
|
262 |
except Exception as e:
|
263 |
print(f"Erreur lors de la génération de l'image: {str(e)}")
|
264 |
return None
|
265 |
|
266 |
# Instance globale du générateur
|
267 |
-
generator =
|
268 |
|
269 |
def generate(prompt, reference_file):
|
270 |
"""Fonction de génération pour l'interface Gradio"""
|
|
|
271 |
try:
|
|
|
|
|
|
|
|
|
272 |
# Gestion du fichier de référence
|
273 |
if reference_file is not None:
|
274 |
-
if isinstance(reference_file, dict):
|
275 |
file_path = reference_file.name
|
276 |
-
else:
|
277 |
file_path = reference_file
|
278 |
|
279 |
file_type = file_path.split('.')[-1].lower()
|
@@ -282,14 +133,13 @@ def generate(prompt, reference_file):
|
|
282 |
elif file_type in ['png', 'jpg', 'jpeg']:
|
283 |
return generator.generate_image(prompt, reference_image=file_path)
|
284 |
|
285 |
-
# Génération sans référence
|
286 |
return generator.generate_image(prompt)
|
287 |
|
288 |
except Exception as e:
|
289 |
print(f"Erreur détaillée: {str(e)}")
|
290 |
return None
|
291 |
|
292 |
-
# Interface Gradio
|
293 |
demo = gr.Interface(
|
294 |
fn=generate,
|
295 |
inputs=[
|
@@ -297,8 +147,8 @@ demo = gr.Interface(
|
|
297 |
gr.File(label="Image ou PDF de référence (optionnel)", type="file")
|
298 |
],
|
299 |
outputs=gr.Image(label="Image générée"),
|
300 |
-
title="
|
301 |
-
description="
|
302 |
)
|
303 |
|
304 |
if __name__ == "__main__":
|
|
|
1 |
+
##TEST125 J'en peu plus de FLUX
|
|
|
|
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import login
|
|
|
6 |
import torch
|
7 |
from PIL import Image
|
8 |
import fitz # PyMuPDF pour la gestion des PDF
|
9 |
+
import gc # Pour le garbage collector
|
10 |
+
import psutil # Pour monitorer la mémoire
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Configuration globale pour réduire l'utilisation de la mémoire
|
13 |
+
torch.set_default_device("cpu")
|
14 |
+
torch.set_num_threads(2) # Limite le nombre de threads CPU
|
15 |
+
torch.set_grad_enabled(False) # Désactive complètement le calcul des gradients
|
16 |
|
17 |
+
def get_memory_usage():
|
18 |
+
"""Retourne l'utilisation actuelle de la mémoire en GB"""
|
19 |
+
process = psutil.Process(os.getpid())
|
20 |
+
return process.memory_info().rss / 1024 / 1024 / 1024 # Conversion en GB
|
21 |
|
22 |
def load_pdf(pdf_path):
|
23 |
"""Traite le texte d'un fichier PDF"""
|
|
|
41 |
raise ValueError("Token d'authentification HuggingFace non trouvé")
|
42 |
login(self.token)
|
43 |
self.pipeline = None
|
44 |
+
self.device = "cpu"
|
45 |
self.load_model()
|
46 |
|
47 |
def load_model(self):
|
48 |
+
"""Charge le modèle FLUX avec des paramètres optimisés pour faible mémoire"""
|
49 |
try:
|
50 |
+
print("Chargement du modèle FLUX avec optimisations mémoire...")
|
51 |
+
print(f"Mémoire utilisée avant chargement: {get_memory_usage():.2f} GB")
|
52 |
+
|
53 |
+
# Configuration pour minimiser l'utilisation de la mémoire
|
54 |
+
model_kwargs = {
|
55 |
+
"low_cpu_mem_usage": True,
|
56 |
+
"torch_dtype": torch.float16, # Utilise float16 pour réduire la mémoire
|
57 |
+
"use_safetensors": True, # Utilise safetensors pour un chargement plus efficace
|
58 |
+
}
|
59 |
+
|
60 |
self.pipeline = FluxPipeline.from_pretrained(
|
61 |
"black-forest-labs/FLUX.1-schnell",
|
62 |
revision="refs/pr/1",
|
63 |
+
device_map={"": self.device},
|
64 |
+
**model_kwargs
|
65 |
)
|
66 |
+
|
67 |
+
# Optimisations supplémentaires
|
68 |
+
self.pipeline.enable_sequential_cpu_offload() # Décharge les composants non utilisés
|
69 |
+
self.pipeline.enable_attention_slicing(slice_size=1) # Réduit l'utilisation de la mémoire pendant l'inférence
|
70 |
+
|
71 |
+
# Force le garbage collector
|
72 |
+
gc.collect()
|
73 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
74 |
+
|
75 |
+
print(f"Mémoire utilisée après chargement: {get_memory_usage():.2f} GB")
|
76 |
+
print("Modèle FLUX chargé avec succès en mode basse consommation!")
|
77 |
+
|
78 |
except Exception as e:
|
79 |
print(f"Erreur lors du chargement du modèle: {str(e)}")
|
80 |
raise
|
81 |
|
82 |
def generate_image(self, prompt, reference_image=None, pdf_file=None):
|
83 |
+
"""Génère une image avec paramètres optimisés pour la mémoire"""
|
84 |
try:
|
|
|
85 |
if pdf_file is not None:
|
86 |
pdf_text = load_pdf(pdf_file)
|
87 |
if pdf_text:
|
88 |
prompt = f"{prompt}\nContexte du PDF:\n{pdf_text}"
|
89 |
|
90 |
+
# Paramètres optimisés pour réduire l'utilisation de la mémoire
|
91 |
+
with torch.no_grad():
|
92 |
image = self.pipeline(
|
93 |
prompt=prompt,
|
94 |
+
num_inference_steps=4, # Minimum d'étapes pour économiser la mémoire
|
95 |
+
height=512, # Taille réduite
|
96 |
+
width=512, # Taille réduite
|
97 |
guidance_scale=0.0,
|
98 |
+
max_sequence_length=128, # Réduit la longueur de séquence
|
99 |
generator=torch.Generator(device=self.device).manual_seed(0)
|
100 |
).images[0]
|
101 |
|
102 |
+
# Force le nettoyage de la mémoire après génération
|
103 |
+
gc.collect()
|
104 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
105 |
+
|
106 |
+
return image
|
107 |
|
108 |
except Exception as e:
|
109 |
print(f"Erreur lors de la génération de l'image: {str(e)}")
|
110 |
return None
|
111 |
|
112 |
# Instance globale du générateur
|
113 |
+
generator = None # On initialise plus tard pour économiser la mémoire
|
114 |
|
115 |
def generate(prompt, reference_file):
|
116 |
"""Fonction de génération pour l'interface Gradio"""
|
117 |
+
global generator
|
118 |
try:
|
119 |
+
# Initialisation tardive du générateur
|
120 |
+
if generator is None:
|
121 |
+
generator = FluxGenerator()
|
122 |
+
|
123 |
# Gestion du fichier de référence
|
124 |
if reference_file is not None:
|
125 |
+
if isinstance(reference_file, dict):
|
126 |
file_path = reference_file.name
|
127 |
+
else:
|
128 |
file_path = reference_file
|
129 |
|
130 |
file_type = file_path.split('.')[-1].lower()
|
|
|
133 |
elif file_type in ['png', 'jpg', 'jpeg']:
|
134 |
return generator.generate_image(prompt, reference_image=file_path)
|
135 |
|
|
|
136 |
return generator.generate_image(prompt)
|
137 |
|
138 |
except Exception as e:
|
139 |
print(f"Erreur détaillée: {str(e)}")
|
140 |
return None
|
141 |
|
142 |
+
# Interface Gradio minimaliste
|
143 |
demo = gr.Interface(
|
144 |
fn=generate,
|
145 |
inputs=[
|
|
|
147 |
gr.File(label="Image ou PDF de référence (optionnel)", type="file")
|
148 |
],
|
149 |
outputs=gr.Image(label="Image générée"),
|
150 |
+
title="FLUX (Mode économique)",
|
151 |
+
description="Génération d'images optimisée pour systèmes à ressources limitées"
|
152 |
)
|
153 |
|
154 |
if __name__ == "__main__":
|