Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from smolagents import CodeAgent, OpenAIServerModel, tool | |
import os, subprocess | |
from bs4 import BeautifulSoup | |
from duckduckgo_search import DDGS | |
import csv | |
import json | |
import requests | |
import whisper | |
from typing import Optional | |
import openpyxl | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------ | |
def download_file(file_name: str) -> None: | |
if not os.path.exists(file_name): | |
url = f"{DEFAULT_API_URL}/files/{file_name.split('.')[0]}" | |
r = requests.get(url) | |
with open(file_name, "wb") as f: | |
f.write(r.content) | |
def open_file_as_text(file_name: str, filetype: Optional[str] = "txt") -> str: | |
""" | |
Opens a file and returns its content as readable text. | |
Supports 'txt', 'json', 'csv', 'xlsx', and 'mp3' (transcribes speech to text). | |
Args: | |
file_name (str): The path or name of the file. | |
filetype (Optional[str]): Type of file ('txt', 'json', 'csv', 'xlsx', 'mp3'). Defaults to 'txt'. | |
Returns: | |
str: The content of the file as text, or transcribed speech if 'mp3'. | |
""" | |
download_file(file_name) | |
try: | |
if filetype == "txt": | |
with open(file_name, "r", encoding="utf-8") as f: | |
return f.read() | |
elif filetype == "json": | |
with open(file_name, "r", encoding="utf-8") as f: | |
data = json.load(f) | |
return json.dumps(data, indent=2) | |
elif filetype == "csv": | |
with open(file_name, "r", encoding="utf-8") as f: | |
reader = csv.reader(f) | |
rows = list(reader) | |
return "\n".join([", ".join(row) for row in rows]) | |
elif filetype == "xlsx": | |
wb = openpyxl.load_workbook(file_name, data_only=True) | |
sheet = wb.active | |
content = [] | |
for row in sheet.iter_rows(values_only=True): | |
content.append(", ".join(str(cell) if cell is not None else "" for cell in row)) | |
return "\n".join(content) | |
elif filetype == "mp3": | |
w = whisper.load_model("base") | |
res = w.transcribe(file_name) | |
return res["text"] | |
else: | |
return f"Unsupported filetype '{filetype}'. Supported types are 'txt', 'json', 'csv', 'xlsx', and 'mp3'." | |
except FileNotFoundError: | |
return f"File '{file_name}' not found." | |
except Exception as e: | |
return f"Error opening file '{file_name}': {str(e)}" | |
def web_search(query: str) -> str: | |
""" | |
Searches the web using DuckDuckGo and returns top search snippets. | |
Args: | |
query (str): The search query string. | |
Returns: | |
str: A list of top search results with title, snippet, and URL. | |
""" | |
try: | |
with DDGS() as ddgs: | |
results = ddgs.text(query, max_results=3) | |
if not results: | |
return "No results found." | |
return "\n\n".join([f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}" for r in results]) | |
except Exception as e: | |
return f"Error during search: {str(e)}" | |
def parse_wikipedia_table(table) -> str: | |
""" | |
Parses a Wikipedia table into a clean, readable text format. | |
Args: | |
table (Tag): BeautifulSoup Tag for the table. | |
Returns: | |
str: Formatted table as readable text. | |
""" | |
rows = [] | |
headers = [] | |
# Try to get headers | |
thead = table.find('thead') | |
if thead: | |
for th in thead.find_all('th'): | |
header_text = th.get_text(separator=" ", strip=True) | |
headers.append(header_text) | |
if headers: | |
rows.append(" | ".join(headers)) | |
# Parse table body rows | |
tbody = table.find('tbody') | |
if not tbody: | |
tbody = table # fallback: some tables have no tbody explicitly | |
for tr in tbody.find_all('tr'): | |
cells = tr.find_all(['th', 'td']) | |
cell_texts = [] | |
for cell in cells: | |
# Clean references like [7], [note 1], etc. | |
for sup in cell.find_all('sup', class_='reference'): | |
sup.decompose() | |
text = cell.get_text(separator=" ", strip=True) | |
cell_texts.append(text) | |
if cell_texts: | |
row_text = " | ".join(cell_texts) | |
rows.append(row_text) | |
return "\n".join(rows) | |
def read_wikipedia_page(url: str) -> str: | |
""" | |
Fetches a Wikipedia article and extracts clean sectioned text around the relevant query. | |
Args: | |
url (str): The Wikipedia page URL. | |
Returns: | |
str: Sectioned and readable snippet focused around the query. | |
""" | |
headers = { | |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36" | |
} | |
resp = requests.get(url, headers=headers, timeout=10) | |
resp.raise_for_status() | |
soup = BeautifulSoup(resp.text, "html.parser") | |
content_div = soup.find('div', id='mw-content-text') | |
if not content_div: | |
return "Content not found." | |
parts = [] | |
for elem in content_div.find_all(['h2', 'h3', 'p', 'ul', 'ol', 'table']): | |
if elem.name in ['h2', 'h3']: | |
parts.append("\n\n" + elem.get_text(strip=True) + "\n") | |
elif elem.name in ['p', 'ul', 'ol']: | |
parts.append(elem.get_text(strip=True)) | |
elif elem.name == 'table': | |
parts.append(parse_wikipedia_table(elem)) | |
full_text = "\n".join(parts) | |
return full_text | |
def smart_paginate_around_query(full_text: str, query: str) -> list: | |
""" | |
Splits text into windows around each occurrence of the query. | |
Args: | |
full_text (str): The full text to search within. | |
query (str): The search query. | |
Returns: | |
list: List of relevant text windows (pages). | |
""" | |
before_chars = 1000 | |
after_chars = 3000 | |
full_text_lower = full_text.lower() | |
query_lower = query.lower() | |
query_len = len(query_lower) | |
pages = [] | |
search_pos = 0 | |
text_len = len(full_text) | |
while True: | |
match_pos = full_text_lower.find(query_lower, search_pos) | |
if match_pos == -1: | |
break # no more matches | |
# Define window around match | |
start = max(0, match_pos - before_chars) | |
end = min(text_len, match_pos + query_len + after_chars) | |
page = full_text[start:end] | |
pages.append(page) | |
# Move search pointer to AFTER current window | |
search_pos = end | |
return pages | |
def reverse_sentence(text: str) -> str: | |
""" | |
Reverses the input text. | |
Args: | |
text (str): The input string to be reversed. | |
Returns: | |
str: The reversed string. | |
""" | |
return text[::-1] | |
def run_python_code(file_name: str) -> str: | |
""" | |
Executes a Python file and returns its printed final output. | |
Args: | |
file_name (str): Name of the Python file. | |
Returns: | |
str: The final printed output. | |
""" | |
download_file(file_name) | |
try: | |
# Run in subprocess with timeout | |
result = subprocess.run( | |
["python", file_name], | |
capture_output=True, | |
text=True, | |
timeout=10 # seconds | |
) | |
if result.returncode != 0: | |
return f"Error running code: {result.stderr.strip()}" | |
output = result.stdout.strip() | |
return output | |
except subprocess.TimeoutExpired: | |
return "Execution timed out." | |
except Exception as e: | |
return f"Error: {str(e)}" | |
tools = [ | |
open_file_as_text, | |
web_search, | |
read_wikipedia_page, | |
smart_paginate_around_query, | |
reverse_sentence, | |
] | |
model = OpenAIServerModel( | |
model_id="gpt-4o", | |
api_key=os.getenv("OPENAI_API_KEY"), | |
temperature=0 | |
) | |
agent = CodeAgent( | |
model=model, | |
tools=tools, | |
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"] | |
) | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = CodeAgent( | |
model=model, | |
tools=tools, | |
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", | |
"urllib"] | |
) | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
file_name = item.get("file_name") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
full_prompt = f"""You are a highly precise answering agent. | |
When given a question: | |
- If necessary, perform a web search using the tool `web_search` to find possible sources of information. | |
- If the web search only returns titles and short snippets, you MUST visit the actual webpage to read the full content before answering. | |
- Use the `read_wikipedia_page` tool to fetch and read the Wikipedia page when necessary. | |
- You just have the ability to read Wikipedia pages only. | |
- You MUST paginate the content using `smart_paginate_around_query`. | |
- When using `smart_paginate_around_query`, you must select a short, general query based on the main keywords only. Avoid using full questions or long phrases. Use 1–3 essential words. | |
- If the task requires reversing the order of words, letters, phrases, or any text, you must use the `reverse_sentence` tool to perform the operation. | |
- Never reverse text manually inside your code. Always call the tool instead. | |
- If the task requires reading, listening, or analyzing a file, you must use the file specified in the `file_name` field of the task metadata, not the file name mentioned casually inside the question text. | |
- Comma separated lists MUST contain a single space after each comma. | |
- If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. | |
- If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. | |
- If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
- Only answer after you have gathered enough information by reading the actual page contents. | |
- Once you have the final answer, you must call `final_answer("your_answer")` immediately after printing it. | |
- Do not retry or execute anything else after calling `final_answer`. | |
- `final_answer` must wrap the exact printed value. | |
Provide ONLY the precise answer requested. | |
Do not include explanations, steps, reasoning, or additional text. | |
Be direct and specific. GAIA benchmark requires exact matching answers. | |
Example: if asked "What is the capital of France?", respond exactly: | |
Thoughts: I need to retrieve the capital of France from Wikipedia and output it directly. | |
Code: | |
```py | |
print("Paris") | |
```<end_code> | |
Based on the above guidelines, answer the following question: | |
--begin of question-- | |
{question_text} | |
--end of question-- | |
If the questions mentions the need to use a file, use the following `file_name` value as the `file_name` parameter in any function calls: | |
file_name: {file_name}""" | |
submitted_answer = agent.run(full_prompt) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |