Really-amin's picture
Upload 553 files
386790e verified
#!/usr/bin/env python3
"""
Backtesting Service
===================
سرویس بک‌تست برای ارزیابی استراتژی‌های معاملاتی با داده‌های تاریخی
"""
from typing import Optional, List, Dict, Any, Tuple
from datetime import datetime, timedelta
from sqlalchemy.orm import Session
from sqlalchemy import and_, desc
import uuid
import logging
import json
import math
from database.models import (
Base, BacktestJob, TrainingStatus, CachedOHLC
)
logger = logging.getLogger(__name__)
class BacktestingService:
"""سرویس اصلی بک‌تست"""
def __init__(self, db_session: Session):
"""
Initialize the backtesting service.
Args:
db_session: SQLAlchemy database session
"""
self.db = db_session
def start_backtest(
self,
strategy: str,
symbol: str,
start_date: datetime,
end_date: datetime,
initial_capital: float
) -> Dict[str, Any]:
"""
Start a backtest for a specific strategy.
Args:
strategy: Name of the strategy to backtest
symbol: Trading pair (e.g., "BTC/USDT")
start_date: Backtest start date
end_date: Backtest end date
initial_capital: Starting capital
Returns:
Dict containing backtest job details
"""
try:
# Generate job ID
job_id = f"BT-{uuid.uuid4().hex[:12].upper()}"
# Create backtest job
job = BacktestJob(
job_id=job_id,
strategy=strategy,
symbol=symbol.upper(),
start_date=start_date,
end_date=end_date,
initial_capital=initial_capital,
status=TrainingStatus.PENDING
)
self.db.add(job)
self.db.commit()
self.db.refresh(job)
# Run backtest in background (for now, run synchronously)
results = self._run_backtest(job)
# Update job with results
job.status = TrainingStatus.COMPLETED
job.total_return = results["total_return"]
job.sharpe_ratio = results["sharpe_ratio"]
job.max_drawdown = results["max_drawdown"]
job.win_rate = results["win_rate"]
job.total_trades = results["total_trades"]
job.results = json.dumps(results)
job.completed_at = datetime.utcnow()
self.db.commit()
self.db.refresh(job)
logger.info(f"Backtest {job_id} completed successfully")
return self._job_to_dict(job)
except Exception as e:
self.db.rollback()
logger.error(f"Error starting backtest: {e}", exc_info=True)
raise
def _run_backtest(self, job: BacktestJob) -> Dict[str, Any]:
"""
Execute the backtest logic.
Args:
job: Backtest job
Returns:
Dict containing backtest results
"""
try:
# Fetch historical data
historical_data = self._fetch_historical_data(
job.symbol,
job.start_date,
job.end_date
)
if not historical_data:
raise ValueError(f"No historical data found for {job.symbol}")
# Get strategy function
strategy_func = self._get_strategy_function(job.strategy)
# Initialize backtest state
capital = job.initial_capital
position = 0.0 # Position size
entry_price = 0.0
trades = []
equity_curve = [capital]
high_water_mark = capital
max_drawdown = 0.0
# Run strategy on historical data
for i, candle in enumerate(historical_data):
close_price = candle["close"]
signal = strategy_func(historical_data[:i+1], close_price)
# Execute trades based on signal
if signal == "BUY" and position == 0:
# Open long position
position = capital / close_price
entry_price = close_price
capital = 0
elif signal == "SELL" and position > 0:
# Close long position
capital = position * close_price
pnl = capital - (position * entry_price)
trades.append({
"entry_price": entry_price,
"exit_price": close_price,
"pnl": pnl,
"return_pct": (pnl / (position * entry_price)) * 100,
"timestamp": candle["timestamp"]
})
position = 0
entry_price = 0.0
# Calculate current equity
current_equity = capital + (position * close_price if position > 0 else 0)
equity_curve.append(current_equity)
# Update drawdown
if current_equity > high_water_mark:
high_water_mark = current_equity
drawdown = ((high_water_mark - current_equity) / high_water_mark) * 100
if drawdown > max_drawdown:
max_drawdown = drawdown
# Close final position if open
if position > 0:
final_price = historical_data[-1]["close"]
capital = position * final_price
pnl = capital - (position * entry_price)
trades.append({
"entry_price": entry_price,
"exit_price": final_price,
"pnl": pnl,
"return_pct": (pnl / (position * entry_price)) * 100,
"timestamp": historical_data[-1]["timestamp"]
})
# Calculate metrics
total_return = ((capital - job.initial_capital) / job.initial_capital) * 100
win_rate = self._calculate_win_rate(trades)
sharpe_ratio = self._calculate_sharpe_ratio(equity_curve)
return {
"total_return": total_return,
"sharpe_ratio": sharpe_ratio,
"max_drawdown": max_drawdown,
"win_rate": win_rate,
"total_trades": len(trades),
"trades": trades,
"equity_curve": equity_curve[-100:] # Last 100 points
}
except Exception as e:
logger.error(f"Error running backtest: {e}", exc_info=True)
raise
def _fetch_historical_data(
self,
symbol: str,
start_date: datetime,
end_date: datetime
) -> List[Dict[str, Any]]:
"""
Fetch historical OHLC data.
Args:
symbol: Trading pair
start_date: Start date
end_date: End date
Returns:
List of candle dictionaries
"""
try:
# Convert symbol to database format (BTC/USDT -> BTCUSDT)
db_symbol = symbol.replace("/", "").upper()
candles = self.db.query(CachedOHLC).filter(
and_(
CachedOHLC.symbol == db_symbol,
CachedOHLC.timestamp >= start_date,
CachedOHLC.timestamp <= end_date,
CachedOHLC.interval == "1h" # Use 1h candles
)
).order_by(CachedOHLC.timestamp.asc()).all()
return [
{
"timestamp": c.timestamp.isoformat() if c.timestamp else None,
"open": c.open,
"high": c.high,
"low": c.low,
"close": c.close,
"volume": c.volume
}
for c in candles
]
except Exception as e:
logger.error(f"Error fetching historical data: {e}", exc_info=True)
return []
def _get_strategy_function(self, strategy_name: str):
"""
Get strategy function by name.
Args:
strategy_name: Strategy name
Returns:
Strategy function
"""
strategies = {
"simple_moving_average": self._sma_strategy,
"rsi_strategy": self._rsi_strategy,
"macd_strategy": self._macd_strategy
}
return strategies.get(strategy_name, self._sma_strategy)
def _sma_strategy(self, data: List[Dict], current_price: float) -> str:
"""Simple Moving Average strategy."""
if len(data) < 50:
return "HOLD"
# Calculate SMAs
closes = [d["close"] for d in data[-50:]]
sma_short = sum(closes[-10:]) / 10
sma_long = sum(closes) / 50
if sma_short > sma_long:
return "BUY"
elif sma_short < sma_long:
return "SELL"
return "HOLD"
def _rsi_strategy(self, data: List[Dict], current_price: float) -> str:
"""RSI strategy."""
if len(data) < 14:
return "HOLD"
# Calculate RSI (simplified)
closes = [d["close"] for d in data[-14:]]
gains = [max(0, closes[i] - closes[i-1]) for i in range(1, len(closes))]
losses = [max(0, closes[i-1] - closes[i]) for i in range(1, len(closes))]
avg_gain = sum(gains) / len(gains) if gains else 0
avg_loss = sum(losses) / len(losses) if losses else 0
if avg_loss == 0:
rsi = 100
else:
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
if rsi < 30:
return "BUY"
elif rsi > 70:
return "SELL"
return "HOLD"
def _macd_strategy(self, data: List[Dict], current_price: float) -> str:
"""MACD strategy."""
if len(data) < 26:
return "HOLD"
# Simplified MACD
closes = [d["close"] for d in data[-26:]]
ema_12 = sum(closes[-12:]) / 12
ema_26 = sum(closes) / 26
macd = ema_12 - ema_26
if macd > 0:
return "BUY"
elif macd < 0:
return "SELL"
return "HOLD"
def _calculate_win_rate(self, trades: List[Dict]) -> float:
"""Calculate win rate from trades."""
if not trades:
return 0.0
winning_trades = sum(1 for t in trades if t["pnl"] > 0)
return (winning_trades / len(trades)) * 100
def _calculate_sharpe_ratio(self, equity_curve: List[float]) -> float:
"""Calculate Sharpe ratio from equity curve."""
if len(equity_curve) < 2:
return 0.0
returns = []
for i in range(1, len(equity_curve)):
if equity_curve[i-1] > 0:
ret = (equity_curve[i] - equity_curve[i-1]) / equity_curve[i-1]
returns.append(ret)
if not returns:
return 0.0
mean_return = sum(returns) / len(returns)
variance = sum((r - mean_return) ** 2 for r in returns) / len(returns)
std_dev = math.sqrt(variance) if variance > 0 else 0.0001
# Annualized Sharpe (assuming daily returns)
sharpe = (mean_return / std_dev) * math.sqrt(365) if std_dev > 0 else 0.0
return sharpe
def _job_to_dict(self, job: BacktestJob) -> Dict[str, Any]:
"""Convert job model to dictionary."""
results = json.loads(job.results) if job.results else {}
return {
"job_id": job.job_id,
"strategy": job.strategy,
"symbol": job.symbol,
"start_date": job.start_date.isoformat() if job.start_date else None,
"end_date": job.end_date.isoformat() if job.end_date else None,
"initial_capital": job.initial_capital,
"status": job.status.value if job.status else None,
"total_return": job.total_return,
"sharpe_ratio": job.sharpe_ratio,
"max_drawdown": job.max_drawdown,
"win_rate": job.win_rate,
"total_trades": job.total_trades,
"results": results,
"created_at": job.created_at.isoformat() if job.created_at else None,
"completed_at": job.completed_at.isoformat() if job.completed_at else None
}