Spaces:
Paused
Paused
File size: 11,269 Bytes
3c588e8 568293e a6ce61d c636ebf 11fc846 a6ce61d 11fc846 592ca68 a6ce61d 11fc846 568293e a6ce61d 568293e a6ce61d 568293e a6ce61d 568293e a6ce61d 568293e 3c588e8 11fc846 3c588e8 11fc846 a6ce61d 568293e a6ce61d 592ca68 11fc846 a6ce61d 3c588e8 3551217 3c588e8 a6ce61d 3551217 a6ce61d 3c588e8 a6ce61d 3c588e8 a6ce61d 3551217 a6ce61d 3551217 a6ce61d a3783e0 a6ce61d a3783e0 3551217 a6ce61d 3551217 a6ce61d a3783e0 1790334 592ca68 11fc846 568293e 592ca68 a6ce61d 568293e 592ca68 11fc846 592ca68 11fc846 1790334 a6ce61d 3c588e8 568293e a6ce61d 11fc846 a6ce61d 11fc846 568293e a6ce61d 568293e a6ce61d 568293e 11fc846 a6ce61d 11fc846 a6ce61d 11fc846 a6ce61d 11fc846 568293e 11fc846 1790334 a6ce61d 1790334 592ca68 3c588e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
```python
import os
import tempfile
import logging
import traceback
from pathlib import Path
from typing import Dict, Any, List
from datetime import datetime
from fastapi import FastAPI, File, UploadFile, HTTPException, Request
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from enhanced_legal_scraper import EnhancedLegalScraper, LegalDocument, IRANIAN_LEGAL_SOURCES
try:
import fitz # PyMuPDF
from PIL import Image
PDF_AVAILABLE = True
logger.info("✅ PDF processing libraries loaded")
except ImportError as e:
PDF_AVAILABLE = False
logger.warning(f"⚠️ PDF libraries not available: {e}")
try:
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import torch
ML_AVAILABLE = True
logger.info("✅ ML libraries loaded")
except ImportError as e:
ML_AVAILABLE = False
logger.warning(f"⚠️ ML libraries not available: {e}")
# Create log directory
log_dir = '/app/logs'
os.makedirs(log_dir, exist_ok=True)
# Configure logging
logging.basicConfig(
level=os.getenv("LOG_LEVEL", "INFO").upper(),
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(os.path.join(log_dir, 'legal_dashboard.log')),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class OCRResponse(BaseModel):
success: bool
text: str
method: str
metadata: Dict[str, Any]
class SystemStatus(BaseModel):
status: str
services: Dict[str, Any]
timestamp: str
class SearchRequest(BaseModel):
query: str
search_type: str = "هوشمند"
doc_filter: str = "همه"
class LegalDashboardAPI:
def __init__(self):
self.scraper = EnhancedLegalScraper(delay=1.5)
self.ocr_service = OCRService()
class OCRService:
def __init__(self):
self.model = None
self.processor = None
self.model_loaded = False
if ML_AVAILABLE and os.getenv("ENVIRONMENT") != "huggingface_free":
self._load_model()
def _load_model(self):
try:
logger.info("Loading TrOCR model...")
model_name = "microsoft/trocr-base-printed"
self.processor = TrOCRProcessor.from_pretrained(model_name, cache_dir="/app/cache")
self.model = VisionEncoderDecoderModel.from_pretrained(model_name, cache_dir="/app/cache")
self.model_loaded = True
logger.info("✅ TrOCR model loaded successfully")
except Exception as e:
logger.warning(f"❌ Failed to load TrOCR model: {e}. OCR will use basic processing.")
self.model_loaded = False
async def extract_text_from_pdf(self, file_path: str) -> OCRResponse:
if not PDF_AVAILABLE:
return OCRResponse(success=False, text="", method="error", metadata={"error": "PDF processing not available"})
try:
doc = fitz.open(file_path)
pages_text = []
total_chars = 0
total_pages = doc.page_count
for page_num in range(min(total_pages, 10)):
page = doc[page_num]
text = page.get_text()
pages_text.append(text)
total_chars += len(text)
doc.close()
full_text = "\n\n--- Page Break ---\n\n".join(pages_text)
return OCRResponse(
success=True,
text=full_text,
method="PyMuPDF",
metadata={
"pages_processed": len(pages_text),
"total_pages": total_pages,
"total_characters": total_chars,
"file_size_kb": os.path.getsize(file_path) / 1024
}
)
except Exception as e:
logger.error(f"PDF processing error: {e}")
return OCRResponse(success=False, text="", method="error", metadata={"error": str(e)})
async def extract_text_from_image(self, file_path: str) -> OCRResponse:
try:
image = Image.open(file_path)
if self.model_loaded and self.processor and self.model:
pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
generated_ids = self.model.generate(pixel_values)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return OCRResponse(
success=True,
text=generated_text,
method="TrOCR",
metadata={
"image_size": image.size,
"image_mode": image.mode,
"model": "microsoft/trocr-base-printed"
}
)
else:
return OCRResponse(
success=True,
text=f"Image processed: {image.size} pixels, {image.mode} mode\nTrOCR model not loaded - text extraction limited",
method="Basic",
metadata={
"image_size": image.size,
"image_mode": image.mode,
"note": "TrOCR model not available"
}
)
except Exception as e:
logger.error(f"Image processing error: {e}")
return OCRResponse(success=False, text="", method="error", metadata={"error": str(e)})
app = FastAPI(
title="Legal Dashboard API",
description="Advanced Legal Document Processing System with OCR and NLP",
version="2.0.0",
docs_url="/api/docs",
redoc_url="/api/redoc"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["http://localhost:7860", "http://127.0.0.1:7860", "*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
legal_api = LegalDashboardAPI()
@app.on_event("startup")
async def startup_event():
if ML_AVAILABLE and os.getenv("ENVIRONMENT") != "huggingface_free":
legal_api.ocr_service._load_model()
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"message": "Legal Dashboard is running",
"timestamp": datetime.now().isoformat(),
"services": {
"pdf_processing": PDF_AVAILABLE,
"ml_models": ML_AVAILABLE,
"ocr_model_loaded": legal_api.ocr_service.model_loaded,
"scraper": bool(legal_api.scraper)
}
}
@app.get("/system/status", response_model=SystemStatus)
async def get_system_status():
return SystemStatus(
status="healthy",
services={
"pdf_processing": {
"available": PDF_AVAILABLE,
"status": "✅ Available" if PDF_AVAILABLE else "❌ Not Available"
},
"ml_models": {
"available": ML_AVAILABLE,
"status": "✅ Available" if ML_AVAILABLE else "❌ Not Available"
},
"ocr_model": {
"loaded": legal_api.ocr_service.model_loaded,
"status": "✅ Loaded" if legal_api.ocr_service.model_loaded else "⏳ Loading..." if ML_AVAILABLE else "❌ Not Available"
},
"scraper": {
"available": bool(legal_api.scraper),
"status": "✅ Available" if legal_api.scraper else "❌ Not Available"
}
},
timestamp=datetime.now().isoformat()
)
@app.post("/api/ocr/extract-pdf", response_model=OCRResponse)
async def extract_pdf_text(file: UploadFile = File(...)):
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
temp_path = None
try:
temp_dir = Path("/app/uploads")
temp_dir.mkdir(exist_ok=True)
temp_path = temp_dir / f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{file.filename}"
with temp_path.open("wb") as f:
f.write(await file.read())
return await legal_api.ocr_service.extract_text_from_pdf(str(temp_path))
finally:
if temp_path and temp_path.exists():
temp_path.unlink()
@app.post("/api/ocr/extract-image", response_model=OCRResponse)
async def extract_image_text(file: UploadFile = File(...)):
allowed_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']
if not any(file.filename.lower().endswith(ext) for ext in allowed_extensions):
raise HTTPException(status_code=400, detail="File must be an image (JPG, PNG, BMP, TIFF)")
temp_path = None
try:
temp_dir = Path("/app/uploads")
temp_dir.mkdir(exist_ok=True)
temp_path = temp_dir / f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{file.filename}"
with temp_path.open("wb") as f:
f.write(await file.read())
return await legal_api.ocr_service.extract_text_from_image(str(temp_path))
finally:
if temp_path and temp_path.exists():
temp_path.unlink()
@app.post("/api/scrape")
async def scrape_documents(max_docs: int = 20):
try:
documents = legal_api.scraper.scrape_real_sources(max_docs=max_docs)
for doc in documents:
legal_api.scraper.save_document(doc)
return {
"success": True,
"documents_processed": len(documents),
"documents": [doc.__dict__ for doc in documents]
}
except Exception as e:
logger.error(f"Scrape failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/search", response_model=List[Dict])
async def search_documents(request: SearchRequest):
try:
filter_map = {
'همه': None,
'قوانین': 'law',
'اخبار': 'news',
'آرا': 'ruling',
'آییننامه': 'regulation',
'عمومی': 'general'
}
doc_type = filter_map.get(request.doc_filter)
if request.search_type == "هوشمند":
results = legal_api.scraper.search_with_similarity(request.query, limit=20)
else:
results = legal_api.scraper._text_search(request.query, limit=20)
if doc_type:
results = [r for r in results if r['document_type'] == doc_type]
return results
except Exception as e:
logger.error(f"Search failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/statistics")
async def get_statistics():
try:
return legal_api.scraper.get_enhanced_statistics()
except Exception as e:
logger.error(f"Statistics failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.exception_handler(Exception)
async def global_exception_handler(request: Request, exc: Exception):
logger.error(f"Global exception: {exc}")
logger.error(traceback.format_exc())
return JSONResponse(
status_code=500,
content={
"error": "Internal server error",
"message": str(exc),
"path": str(request.url)
}
)
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=False, log_level="info")
``` |