app / app.py
Semnykcz's picture
Upload folder using huggingface_hub
3ede7ef verified
import gradio as gr
import torch
from PIL import Image
import numpy as np
from transformers import pipeline
import requests
from io import BytesIO
import os
from huggingface_hub import login
import warnings
warnings.filterwarnings("ignore")
class PhotoUpscaler:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.current_model = None
self.upscaler = None
self.load_default_model()
def load_default_model(self):
"""Load default upscaling model with Real-ESRGAN priority"""
# Priority list of models to try
priority_models = [
"ai-forever/Real-ESRGAN",
"sberbank-ai/Real-ESRGAN",
"caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr",
"microsoft/swin2SR-compressed-sr-x2-48"
]
for model_name in priority_models:
try:
self.current_model = model_name
if "Real-ESRGAN" in model_name:
# Special handling for Real-ESRGAN models
try:
from diffusers import StableDiffusionUpscalePipeline
self.upscaler = StableDiffusionUpscalePipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
return f"✅ Real-ESRGAN model načten: {self.current_model}"
except:
# Fallback to regular pipeline
self.upscaler = pipeline(
"image-to-image",
model=model_name,
device=0 if self.device == "cuda" else -1
)
return f"✅ Model načten: {self.current_model}"
else:
# Regular Swin2SR models
self.upscaler = pipeline(
"image-to-image",
model=model_name,
device=0 if self.device == "cuda" else -1
)
return f"✅ Model načten: {self.current_model}"
except Exception as e:
print(f"Nepodařilo se načíst {model_name}: {e}")
continue
return f"❌ Nepodařilo se načíst žádný model"
def upscale_image(self, image, scale_factor=2, model_choice="default"):
"""Upscale image using selected model"""
if image is None:
return None, "❌ Žádný obrázek nebyl nahrán"
try:
# Convert to PIL if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Resize for processing if image is too large
max_size = 1024
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
# Change model if requested
if model_choice != "default" and model_choice != self.current_model:
self.load_model(model_choice)
# Perform upscaling based on model type
if self.upscaler:
try:
if "Real-ESRGAN" in self.current_model:
# Special handling for Real-ESRGAN models
if hasattr(self.upscaler, '__call__'):
# Diffusers pipeline
prompt = "high quality, detailed, sharp"
upscaled = self.upscaler(
prompt=prompt,
image=image,
num_inference_steps=20,
guidance_scale=0
).images[0]
else:
# Regular pipeline fallback
upscaled = self.upscaler(image)
elif "stable-diffusion" in self.current_model.lower():
# Stable Diffusion upscaler
from diffusers import StableDiffusionUpscalePipeline
prompt = "high quality, detailed, sharp, realistic"
upscaled = self.upscaler(
prompt=prompt,
image=image,
num_inference_steps=20
).images[0]
else:
# Standard Swin2SR and other models
upscaled = self.upscaler(image)
if isinstance(upscaled, list):
upscaled = upscaled[0]
if hasattr(upscaled, 'images'):
upscaled = upscaled.images[0]
elif isinstance(upscaled, dict) and 'image' in upscaled:
upscaled = upscaled['image']
return upscaled, f"✅ Obrázek zvětšen pomocí {MODEL_DESCRIPTIONS.get(self.current_model, self.current_model)}"
except Exception as model_error:
print(f"Model error: {model_error}")
# Fallback to simple upscaling
new_size = tuple(int(dim * scale_factor) for dim in image.size)
upscaled = image.resize(new_size, Image.Resampling.LANCZOS)
return upscaled, f"✅ Obrázek zvětšen pomocí klasického algoritmu (model selhání)"
else:
# Simple fallback upscaling
new_size = tuple(int(dim * scale_factor) for dim in image.size)
upscaled = image.resize(new_size, Image.Resampling.LANCZOS)
return upscaled, f"✅ Obrázek zvětšen pomocí klasického algoritmu (fallback)"
except Exception as e:
return None, f"❌ Chyba při zpracování: {str(e)}"
def load_model(self, model_name):
"""Load specific model with enhanced support for different model types"""
try:
self.current_model = model_name
if "Real-ESRGAN" in model_name:
# Try Real-ESRGAN specific loading
try:
from diffusers import StableDiffusionUpscalePipeline
self.upscaler = StableDiffusionUpscalePipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
return f"✅ Real-ESRGAN model načten: {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
except:
# Fallback to regular pipeline
self.upscaler = pipeline(
"image-to-image",
model=model_name,
device=0 if self.device == "cuda" else -1
)
return f"✅ Model načten (fallback): {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
elif "stable-diffusion" in model_name.lower():
# Stable Diffusion upscaler
from diffusers import StableDiffusionUpscalePipeline
self.upscaler = StableDiffusionUpscalePipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
return f"✅ SD Upscaler načten: {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
elif "ldm" in model_name.lower():
# LDM models
from diffusers import LDMSuperResolutionPipeline
self.upscaler = LDMSuperResolutionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
return f"✅ LDM model načten: {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
else:
# Standard pipeline for Swin2SR and similar models
self.upscaler = pipeline(
"image-to-image",
model=model_name,
device=0 if self.device == "cuda" else -1
)
return f"✅ Model načten: {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
except Exception as e:
return f"❌ Chyba při načítání modelu {MODEL_DESCRIPTIONS.get(model_name, model_name)}: {str(e)}"
# Initialize upscaler
upscaler = PhotoUpscaler()
# Available models for upscaling
UPSCALING_MODELS = [
"default",
# Real-ESRGAN models (nejlepší pro realistické fotografie)
"ai-forever/Real-ESRGAN",
"sberbank-ai/Real-ESRGAN",
"philz1337x/clarity-upscaler",
# BSRGAN models (vynikající pro reálné obrázky)
"caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr",
"caidas/swin2SR-realworld-sr-x2-64-bsrgan-psnr",
# SwinIR models (state-of-the-art)
"caidas/swinIR-M-real-sr-x4-64-bsrgan-psnr",
"caidas/swinIR-L-real-sr-x4-64-bsrgan-psnr",
# Microsoft Swin2SR (optimalizované)
"microsoft/swin2SR-compressed-sr-x2-48",
"microsoft/swin2SR-compressed-sr-x4-48",
"microsoft/swin2SR-classical-sr-x2-64",
"microsoft/swin2SR-classical-sr-x4-64",
"microsoft/swin2SR-realworld-sr-x4-64-bsrgan-psnr",
# Další pokročilé modely
"Kolors/Kolors-IP-Adapter-FaceID-Plus",
"stabilityai/stable-diffusion-x4-upscaler",
"CompVis/ldm-super-resolution-4x-openimages"
]
# Model descriptions for better user experience
MODEL_DESCRIPTIONS = {
"default": "🎯 Výchozí model - rychlý a spolehlivý",
"ai-forever/Real-ESRGAN": "🏆 Real-ESRGAN - nejlepší pro fotografie",
"sberbank-ai/Real-ESRGAN": "⭐ Real-ESRGAN Sberbank - vylepšená verze",
"philz1337x/clarity-upscaler": "✨ Clarity Upscaler - ultra ostrý",
"caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr": "🌟 BSRGAN 4x - premium kvalita",
"caidas/swin2SR-realworld-sr-x2-64-bsrgan-psnr": "🌟 BSRGAN 2x - rychlejší",
"caidas/swinIR-M-real-sr-x4-64-bsrgan-psnr": "🚀 SwinIR Medium - vyváženost",
"caidas/swinIR-L-real-sr-x4-64-bsrgan-psnr": "🔥 SwinIR Large - maximální kvalita",
"microsoft/swin2SR-compressed-sr-x2-48": "⚡ Komprimovaný 2x - rychlý",
"microsoft/swin2SR-compressed-sr-x4-48": "⚡ Komprimovaný 4x - rychlý",
"microsoft/swin2SR-classical-sr-x2-64": "🎨 Klasický 2x - digitální obrázky",
"microsoft/swin2SR-classical-sr-x4-64": "🎨 Klasický 4x - digitální obrázky",
"stabilityai/stable-diffusion-x4-upscaler": "🎭 SD Upscaler - kreativní vylepšení",
"CompVis/ldm-super-resolution-4x-openimages": "🧠 LDM - generativní upscaling"
}
def process_upscaling(image, scale_factor, model_choice, hf_token):
"""Main processing function"""
# Login to HuggingFace if token provided
if hf_token and hf_token.strip():
try:
login(hf_token)
status_msg = "🔐 Přihlášen k Hugging Face | "
except:
status_msg = "⚠️ Problém s HF tokenem | "
else:
status_msg = "ℹ️ Používám veřejné modely | "
# Perform upscaling
result_image, process_msg = upscaler.upscale_image(image, scale_factor, model_choice)
return result_image, status_msg + process_msg
def get_model_info():
"""Get current model information"""
device_info = f"Zařízení: {upscaler.device.upper()}"
model_info = f"Aktuální model: {upscaler.current_model}"
return f"ℹ️ {device_info} | {model_info}"
# Create Gradio interface
with gr.Blocks(
title="🚀 Photo Upscaler - Hugging Face",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
}
.title {
text-align: center;
color: #ff6b35;
margin-bottom: 20px;
}
"""
) as demo:
gr.HTML("""
<div class="title">
<h1>🚀 Photo Upscaler s Hugging Face</h1>
<p>Zvětšujte své fotografie pomocí pokročilých AI modelů</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📤 Vstup")
input_image = gr.Image(
label="Nahrajte fotografii",
type="pil",
format="png"
)
scale_factor = gr.Slider(
minimum=1.5,
maximum=4.0,
value=2.0,
step=0.5,
label="Faktor zvětšení",
info="Kolikrát zvětšit obrázek"
)
model_choice = gr.Dropdown(
choices=[(MODEL_DESCRIPTIONS.get(model, model), model) for model in UPSCALING_MODELS],
value="default",
label="Vyberte model",
info="Různé modely pro různé typy obrázků - Real-ESRGAN nejlepší pro fotografie"
)
hf_token = gr.Textbox(
label="Hugging Face Token (volitelné)",
placeholder="hf_xxxxxxxxxxxxx",
type="password",
info="Pro přístup k privátním modelům"
)
upscale_btn = gr.Button(
"🔍 Zvětšit obrázek",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("### 📥 Výstup")
output_image = gr.Image(
label="Zvětšený obrázek",
type="pil"
)
status_text = gr.Textbox(
label="Status",
interactive=False,
max_lines=3
)
info_btn = gr.Button("ℹ️ Info o modelu")
# Event handlers
upscale_btn.click(
fn=process_upscaling,
inputs=[input_image, scale_factor, model_choice, hf_token],
outputs=[output_image, status_text]
)
info_btn.click(
fn=get_model_info,
outputs=status_text
)
# Examples and tips
gr.Markdown("### 📋 Tipy pro nejlepší výsledky")
with gr.Row():
with gr.Column():
gr.Markdown("""
**🏆 Nejlepší modely pro fotografie:**
- **Real-ESRGAN**: Nejkvalitnější pro reálné fotky
- **BSRGAN**: Vynikající detail a ostrost
- **SwinIR Large**: Maximální kvalita, pomalejší
- **Clarity Upscaler**: Ultra ostrý výsledek
""")
with gr.Column():
gr.Markdown("""
**⚡ Rychlé modely:**
- **Komprimované modely**: Rychlé zpracování
- **2x modely**: Rychlejší než 4x verze
- **Classical modely**: Pro digitální obrázky
""")
gr.Markdown("""
### 💡 Doporučení podle typu obrázku:
- **Portréty**: Real-ESRGAN nebo SwinIR Large
- **Krajiny**: BSRGAN nebo Clarity Upscaler
- **Staré fotky**: Real-ESRGAN s noise reduction
- **Digitální art**: Classical nebo Stable Diffusion Upscaler
- **Dokumenty**: SwinIR Medium pro čitelnost
### ⚙️ Optimalizace výkonu:
- **GPU**: Automaticky detekováno pro rychlejší zpracování
- **Velikost**: 256-512px pro nejlepší poměr rychlost/kvalita
- **Formát**: PNG zachovává nejvyšší kvalitu
- **HF Token**: Pro přístup k nejnovějším modelům
""")
if __name__ == "__main__":
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)