Spaces:
Sleeping
Sleeping
File size: 1,787 Bytes
11b3d03 2e3ac41 11b3d03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
# Load a pre-trained image classification model
model_name = "Shio-Koube/Anime_filterer"
image_processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
def classify_image(image):
# Ensure the image is in RGB mode
if image is None:
return "No image uploaded"
# Convert image to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Preprocess the image
inputs = image_processor(images=image, return_tensors="pt")
# Perform prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Get predictions
probabilities = torch.nn.functional.softmax(logits, dim=-1)
# Get class labels and handle fewer than 5 classes
labels = model.config.id2label
num_classes = len(labels)
# Determine number of predictions to show
top_k = min(num_classes, 3)
# Get top predictions
top_prob, top_indices = probabilities.topk(top_k)
# Format results
results = []
for prob, idx in zip(top_prob[0], top_indices[0]):
label = labels[idx.item()]
percentage = prob.item() * 100
results.append(f"{label}: {percentage:.2f}%")
return "\n".join(results)
# Create Gradio interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(label="Top Predictions"),
title="Image Classification with Hugging Face",
description="Upload an image to get classification predictions"
)
# Launch the app
if __name__ == "__main__":
iface.launch() |