Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from gradio_litmodel3d import LitModel3D | |
import spaces | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from Amodal3R.pipelines import Amodal3RImageTo3DPipeline | |
from Amodal3R.representations import Gaussian, MeshExtractResult | |
from Amodal3R.utils import render_utils, postprocessing_utils | |
from segment_anything import sam_model_registry, SamPredictor | |
from huggingface_hub import hf_hub_download | |
import cv2 | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
shutil.rmtree(user_dir) | |
def reset_image(predictor, img): | |
predictor.set_image(img) | |
original_img = img.copy() | |
return predictor, original_img, "The models are ready.", [] | |
def button_clickable(selected_points): | |
if len(selected_points) > 0: | |
return gr.Button.update(interactive=True) | |
else: | |
return gr.Button.update(interactive=False) | |
def run_sam(predictor, selected_points): | |
if len(selected_points) == 0: | |
return [], None | |
input_points = [p for p in selected_points] | |
input_labels = [1 for _ in range(len(selected_points))] | |
masks, _, _ = predictor.predict( | |
point_coords=np.array(input_points), | |
point_labels=np.array(input_labels), | |
multimask_output=False, | |
) | |
best_mask = masks[0].astype(np.uint8) | |
# dilate | |
if len(selected_points) > 1: | |
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) | |
best_mask = cv2.dilate(best_mask, kernel, iterations=1) | |
best_mask = cv2.erode(best_mask, kernel, iterations=1) | |
return best_mask | |
def apply_mask_overlay(image, mask, color=(255, 0, 0)): | |
img_arr = image | |
overlay = img_arr.copy() | |
gray_color = np.array([200, 200, 200], dtype=np.uint8) | |
non_mask = mask == 0 | |
overlay[non_mask] = (0.5 * overlay[non_mask] + 0.5 * gray_color).astype(np.uint8) | |
contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
cv2.drawContours(overlay, contours, -1, color, 2) | |
return overlay | |
def segment_and_overlay(image, points, sam_predictor): | |
visible_mask = run_sam(sam_predictor, points) | |
overlaid = apply_mask_overlay(image, visible_mask * 255) | |
return overlaid, visible_mask | |
def image_to_3d( | |
image: np.ndarray, | |
mask: np.ndarray, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
erode_kernel_size: int, | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
outputs = pipeline.run_multi_image( | |
[image], | |
[mask], | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
mode="stochastic", | |
erode_kernel_size=erode_kernel_size, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120, bg_color=(1,1,1))['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
torch.cuda.empty_cache() | |
return state, video_path | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> tuple: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, mesh = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def extract_gaussian(state: dict, req: gr.Request) -> tuple: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, _ = unpack_state(state) | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
gs.save_ply(gaussian_path) | |
torch.cuda.empty_cache() | |
return gaussian_path, gaussian_path | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
} | |
def unpack_state(state: dict) -> tuple: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh | |
def get_sam_predictor(): | |
sam_checkpoint = hf_hub_download("ybelkada/segment-anything", "checkpoints/sam_vit_h_4b8939.pth") | |
model_type = "vit_h" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam_predictor = SamPredictor(sam) | |
return sam_predictor | |
def draw_points_on_image(image, point): | |
image_with_points = image.copy() | |
x, y = point | |
color = (255, 0, 0) | |
cv2.circle(image_with_points, (int(x), int(y)), radius=10, color=color, thickness=-1) | |
return image_with_points | |
def see_point(image, x, y): | |
updated_image = draw_points_on_image(image, [x,y]) | |
return updated_image | |
def add_point(x, y, visible_points): | |
if [x, y] not in visible_points: | |
visible_points.append([x, y]) | |
return visible_points | |
def delete_point(visible_points): | |
visible_points.pop() | |
return visible_points | |
def clear_all_points(image): | |
updated_image = image.copy() | |
return updated_image | |
def see_visible_points(image, visible_points): | |
updated_image = image.copy() | |
for p in visible_points: | |
cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1) | |
return updated_image | |
def update_all_points(visible_points): | |
text = f"Points: {visible_points}" | |
visible_dropdown_choices = [f"({p[0]}, {p[1]})" for p in visible_points] | |
return text, gr.Dropdown(label="Select Point to Delete", choices=visible_dropdown_choices, value=None, interactive=True) | |
def delete_selected_visible(image, visible_points, selected_value): | |
try: | |
selected_index = [f"({p[0]}, {p[1]})" for p in visible_points].index(selected_value) | |
except ValueError: | |
selected_index = None | |
if selected_index is not None and 0 <= selected_index < len(visible_points): | |
visible_points.pop(selected_index) | |
updated_image = image.copy() | |
for p in visible_points: | |
cv2.circle(updated_image, (int(p[0]), int(p[1])), radius=10, color=(255, 0, 0), thickness=-1) | |
updated_text, vis_dropdown = update_all_points(visible_points) | |
return updated_image, visible_points, updated_text, vis_dropdown | |
def add_mask(mask, mask_list): | |
if len(mask_list) > 0: | |
if np.array_equal(mask, mask_list[-1]): | |
return mask_list | |
mask_list.append(mask) | |
return mask_list | |
def vis_mask(image, mask_list): | |
updated_image = image.copy() | |
combined_mask = np.zeros_like(updated_image[:, :, 0]) | |
for mask in mask_list: | |
combined_mask = cv2.bitwise_or(combined_mask, mask) | |
updated_image = apply_mask_overlay(updated_image, combined_mask) | |
return updated_image | |
def delete_mask(mask_list): | |
if len(mask_list) > 0: | |
mask_list.pop() | |
return mask_list | |
def check_combined_mask(image, visibility_mask, mask_list, scale=0.65): | |
updated_image = image.copy() | |
combined_mask = np.zeros_like(updated_image[:, :, 0]) | |
occluded_mask = np.zeros_like(updated_image[:, :, 0]) | |
if len(mask_list) == 0: | |
combined_mask = visibility_mask | |
else: | |
for mask in mask_list: | |
combined_mask = cv2.bitwise_or(combined_mask, mask) | |
if len(mask_list) > 1: | |
kernel = np.ones((5, 5), np.uint8) | |
dilate_iterations = 1 | |
combined_mask = cv2.dilate(combined_mask, kernel, iterations=dilate_iterations) | |
combined_mask = cv2.erode(combined_mask, kernel, iterations=dilate_iterations) | |
masked_img = updated_image * combined_mask[:, :, None] | |
occluded_mask[combined_mask == 1] = 127 | |
x, y, w, h = cv2.boundingRect(combined_mask.astype(np.uint8)) | |
cropped_occluded_mask = (occluded_mask[y:y+h, x:x+w]).astype(np.uint8) | |
cropped_img = masked_img[y:y+h, x:x+w] | |
target_size = 512 | |
scale_factor = target_size / max(w, h) | |
new_w = int(round(w * scale_factor * scale)) | |
new_h = int(round(h * scale_factor * scale)) | |
resized_occluded_mask = cv2.resize(cropped_occluded_mask.astype(np.uint8), (new_w, new_h), cv2.INTER_NEAREST) | |
resized_img = cv2.resize(cropped_img, (new_w, new_h), cv2.INTER_NEAREST) | |
final_img = np.zeros((target_size, target_size, 3), dtype=updated_image.dtype) | |
final_occluded_mask = np.zeros((target_size, target_size), dtype=np.uint8) | |
x_offset = (target_size - new_w) // 2 | |
y_offset = (target_size - new_h) // 2 | |
final_img[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized_img | |
final_occluded_mask[y_offset:y_offset+new_h, x_offset:x_offset+new_w] = resized_occluded_mask | |
return final_img, final_occluded_mask | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
""" | |
Get the random seed. | |
""" | |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
## 3D Amodal Reconstruction with [Amodal3R](https://sm0kywu.github.io/Amodal3R/) | |
""") | |
predictor = gr.State(value=get_sam_predictor()) | |
visible_points_state = gr.State(value=[]) | |
occlusion_points_state = gr.State(value=[]) | |
original_image = gr.State(value=None) | |
visibility_mask = gr.State(value=None) | |
visibility_mask_list = gr.State(value=[]) | |
occluded_mask = gr.State(value=None) | |
output_buf = gr.State() | |
with gr.Row(): | |
gr.Markdown(""" | |
### Step 1 - Generate Visibility Mask. | |
* Please wait for a few seconds after uploading the image. The 2D segmenter is getting ready. | |
* Add the point prompts to indicate the target object. "Render Point", see the position of the point to be added. "Add Point", the point will be added to the list. | |
* "Generate mask", see the segmented area corresponding to current point list. "Add mask", current mask will be added for 3D amodal completion. | |
* The target object need to be put in the center of the image and the scale can be adjusted for better reconstruction. | |
* Please click "Load Example Image" when using the provided example images. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="numpy", label='Input Occlusion Image', sources="upload", height=300) | |
with gr.Row(): | |
apply_example_btn = gr.Button("Load Example Image") | |
message = gr.Markdown("Please wait a few seconds after uploading the image.", label="Message") # 用于显示提示信息 | |
with gr.Row(): | |
x_input = gr.Number(label="X Coordinate", value=0) | |
y_input = gr.Number(label="Y Coordinate", value=0) | |
with gr.Row(): | |
see_button = gr.Button("Render Point") | |
add_button = gr.Button("Add Point") | |
with gr.Row(): | |
clear_button = gr.Button("Clear Points") | |
see_visible_button = gr.Button("Render Added Points") | |
with gr.Row(): | |
# 新增文本框实时显示点列表 | |
points_text = gr.Textbox(label="Points List", interactive=False) | |
with gr.Row(): | |
# 新增下拉菜单,用户可选择需要删除的点 | |
visible_points_dropdown = gr.Dropdown(label="Select Point to Delete", choices=[], value=None, interactive=True) | |
delete_visible_button = gr.Button("Delete Selected Visible") | |
with gr.Column(): | |
# 用于显示 SAM 分割结果 | |
visible_mask = gr.Image(label='Visible Mask', interactive=False, height=300) | |
with gr.Row(): | |
gen_vis_mask = gr.Button("Generate Mask") | |
add_vis_mask = gr.Button("Add Mask") | |
with gr.Row(): | |
render_vis_mask = gr.Button("Render Mask") | |
undo_vis_mask = gr.Button("Undo Last Mask") | |
vis_input = gr.Image(label='Visible Input', interactive=False, height=300) | |
with gr.Row(): | |
zoom_scale = gr.Slider(0.3, 1.0, label="Target Object Scale", value=0.68, step=0.1) | |
check_visible_input = gr.Button("Generate Occluded Input") | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=[input_image], | |
fn=lambda x: x, | |
outputs=[input_image], | |
run_on_click=True, | |
examples_per_page=12, | |
) | |
with gr.Row(): | |
gr.Markdown(""" | |
### Step 2 - 3D Amodal Completion. | |
* Different random seeds can be tried in "Generation Settings", if you think the results are not ideal. | |
* The boundary of the segmentation may not be accurate, so here we provide the option to erode the visible area. | |
* If the reconstruction 3D asset is satisfactory, you can extract the GLB file and download it. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion(label="Generation Settings", open=True): | |
with gr.Row(): | |
with gr.Column(): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=1, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=False) | |
with gr.Column(): | |
erode_kernel_size = gr.Slider(0, 5, label="Erode Kernel Size", value=3, step=1) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
generate_btn = gr.Button("Amodal 3D Reconstruction") | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
with gr.Row(): | |
extract_glb_btn = gr.Button("Extract GLB") | |
extract_gs_btn = gr.Button("Extract Gaussian") | |
gr.Markdown(""" | |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* | |
""") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) | |
with gr.Row(): | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
# # Handlers | |
demo.load(start_session) | |
demo.unload(end_session) | |
input_image.upload( | |
reset_image, | |
[predictor, input_image], | |
[predictor, original_image, message, visible_points_state], | |
) | |
apply_example_btn.click( | |
reset_image, | |
inputs=[predictor, input_image], | |
outputs=[predictor, original_image, message, visible_points_state] | |
) | |
see_button.click( | |
see_point, | |
inputs=[original_image, x_input, y_input], | |
outputs=[input_image] | |
) | |
add_button.click( | |
add_point, | |
inputs=[x_input, y_input, visible_points_state], | |
outputs=[visible_points_state] | |
) | |
clear_button.click( | |
clear_all_points, | |
inputs=[original_image], | |
outputs=[input_image] | |
) | |
see_visible_button.click( | |
see_visible_points, | |
inputs=[input_image, visible_points_state], | |
outputs=input_image | |
) | |
visible_points_state.change( | |
update_all_points, | |
inputs=[visible_points_state], | |
outputs=[points_text, visible_points_dropdown] | |
) | |
delete_visible_button.click( | |
delete_selected_visible, | |
inputs=[input_image, visible_points_state, visible_points_dropdown], | |
outputs=[input_image, visible_points_state, points_text, visible_points_dropdown] | |
) | |
gen_vis_mask.click( | |
segment_and_overlay, | |
inputs=[original_image, visible_points_state, predictor], | |
outputs=[visible_mask, visibility_mask] | |
) | |
add_vis_mask.click( | |
add_mask, | |
inputs=[visibility_mask, visibility_mask_list], | |
outputs=[visibility_mask_list] | |
) | |
render_vis_mask.click( | |
vis_mask, | |
inputs=[original_image, visibility_mask_list], | |
outputs=[visible_mask] | |
) | |
undo_vis_mask.click( | |
delete_mask, | |
inputs=[visibility_mask_list], | |
outputs=[visibility_mask_list] | |
) | |
check_visible_input.click( | |
check_combined_mask, | |
inputs=[original_image, visibility_mask, visibility_mask_list, zoom_scale], | |
outputs=[vis_input, occluded_mask] | |
) | |
# 3D Amodal Reconstruction | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
image_to_3d, | |
inputs=[vis_input, occluded_mask, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, erode_kernel_size], | |
outputs=[output_buf, video_output], | |
).then( | |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
video_output.clear( | |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_glb], | |
) | |
extract_gs_btn.click( | |
extract_gaussian, | |
inputs=[output_buf], | |
outputs=[model_output, download_gs], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_gs], | |
) | |
model_output.clear( | |
lambda: gr.Button(interactive=False), | |
outputs=[download_glb], | |
) | |
if __name__ == "__main__": | |
pipeline = Amodal3RImageTo3DPipeline.from_pretrained("Sm0kyWu/Amodal3R") | |
pipeline.cuda() | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) | |
except: | |
pass | |
demo.launch() |