File size: 17,824 Bytes
4fbcf68
 
ec9f5b2
4fbcf68
 
133bf59
4fbcf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5f30e
ec9f5b2
8a7f2d8
4fbcf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8dba50
 
 
 
 
 
 
 
ec9f5b2
 
 
 
4fbcf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec9f5b2
4fbcf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e603103
4fbcf68
 
 
ec9f5b2
a8dba50
4fbcf68
ec9f5b2
a8dba50
 
 
 
 
 
 
4fbcf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9395959
4fbcf68
 
 
 
 
 
ae28beb
4fbcf68
 
 
 
ec9f5b2
4fbcf68
a8dba50
ec9f5b2
a8dba50
4fbcf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec9f5b2
4fbcf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e603103
 
 
4fbcf68
 
 
 
 
 
e603103
4fbcf68
 
 
ec9f5b2
4fbcf68
 
ec9f5b2
a8dba50
4fbcf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9395959
4fbcf68
 
 
 
 
 
ae28beb
4fbcf68
 
 
 
 
 
 
 
ec9f5b2
4fbcf68
 
ec9f5b2
4fbcf68
ec9f5b2
a8dba50
4fbcf68
 
 
 
133bf59
4fbcf68
133bf59
bdba660
 
133bf59
7ad58c4
bdba660
 
 
7ad58c4
bdba660
133bf59
7ad58c4
bdba660
 
 
 
7ad58c4
bdba660
133bf59
 
 
 
e603103
133bf59
 
 
 
e603103
133bf59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad58c4
133bf59
 
 
 
 
 
 
 
 
7ad58c4
 
 
 
133bf59
7ad58c4
 
133bf59
7ad58c4
 
133bf59
7ad58c4
 
133bf59
 
 
7ad58c4
 
133bf59
7ad58c4
 
 
133bf59
7ad58c4
 
 
133bf59
e603103
133bf59
 
e603103
d784ff5
133bf59
 
 
 
 
e603103
7ad58c4
133bf59
e603103
133bf59
 
 
 
 
 
 
 
 
 
 
363526f
133bf59
 
 
 
 
 
 
 
 
363526f
133bf59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Import necessary modules
import asyncio
import logging
import os
import threading
from typing import Dict
import uuid
from fastapi.encoders import jsonable_encoder
import numpy as np
import pandas as pd
from pandasai import SmartDataframe
from langchain_groq.chat_models import ChatGroq
from dotenv import load_dotenv
from pydantic import BaseModel
from csv_service import clean_data, extract_chart_filenames
from langchain_groq import ChatGroq
import pandas as pd
from langchain_experimental.tools import PythonAstREPLTool
from langchain_experimental.agents import create_pandas_dataframe_agent
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
from gemini_langchain_agent import langchain_gemini_csv_handler
from openai_pandasai_service import openai_chart
from supabase_service import upload_file_to_supabase
from util_service import _prompt_generator, process_answer
import matplotlib
matplotlib.use('Agg')


load_dotenv()

image_file_path = os.getenv("IMAGE_FILE_PATH")
image_not_found = os.getenv("IMAGE_NOT_FOUND")
allowed_hosts = os.getenv("ALLOWED_HOSTS", "").split(",")


# Load environment variables
groq_api_keys = os.getenv("GROQ_API_KEYS").split(",")
model_name = os.getenv("GROQ_LLM_MODEL")

class CsvUrlRequest(BaseModel):
    csv_url: str
    
class ImageRequest(BaseModel):
    image_path: str
    
class CsvCommonHeadersRequest(BaseModel):
  file_urls: list[str]
  
class CsvsMergeRequest(BaseModel):
    file_urls: list[str]
    merge_type: str
    common_columns_name: list[str]

# Thread-safe key management for groq_chat
current_groq_key_index = 0
current_groq_key_lock = threading.Lock()

# Thread-safe key management for langchain_csv_chat
current_langchain_key_index = 0
current_langchain_key_lock = threading.Lock()


# CHAT CODING STARTS FROM HERE
def handle_out_of_range_float(value):
    if isinstance(value, float):
        if np.isnan(value):
            return None
        elif np.isinf(value):
            return "Infinity"
    return value

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


# Modified groq_chat function with thread-safe key rotation
def groq_chat(csv_url: str, question: str):
    global current_groq_key_index, current_groq_key_lock

    while True:
        with current_groq_key_lock:
            if current_groq_key_index >= len(groq_api_keys):
                return {"error": "All API keys exhausted."}
            current_api_key = groq_api_keys[current_groq_key_index]

        try:
            # Delete cache file if exists
            cache_db_path = "/workspace/cache/cache_db_0.11.db"
            if os.path.exists(cache_db_path):
                try:
                    os.remove(cache_db_path)
                except Exception as e:
                    logger.info(f"Error deleting cache DB file: {e}")

            data = clean_data(csv_url)
            llm = ChatGroq(model=model_name, api_key=current_api_key)
            # Generate unique filename using UUID
            chart_filename = f"chart_{uuid.uuid4()}.png"
            chart_path = os.path.join("generated_charts", chart_filename)
            
            # Configure SmartDataframe with chart settings
            df = SmartDataframe(
                data,
                config={
                    'llm': llm,
                    'save_charts': True,  # Enable chart saving
                    'open_charts': False,
                    'save_charts_path': os.path.dirname(chart_path),  # Directory to save
                    'custom_chart_filename': chart_filename  # Unique filename
                }
            )
            
            answer = df.chat(question)

            # Process different response types
            if isinstance(answer, pd.DataFrame):
                processed = answer.apply(handle_out_of_range_float).to_dict(orient="records")
            elif isinstance(answer, pd.Series):
                processed = answer.apply(handle_out_of_range_float).to_dict()
            elif isinstance(answer, list):
                processed = [handle_out_of_range_float(item) for item in answer]
            elif isinstance(answer, dict):
                processed = {k: handle_out_of_range_float(v) for k, v in answer.items()}
            else:
                processed = {"answer": str(handle_out_of_range_float(answer))}

            return processed

        except Exception as e:
            error_message = str(e)
            if "429" in error_message:
                with current_groq_key_lock:
                    current_groq_key_index += 1
                    if current_groq_key_index >= len(groq_api_keys):
                        logger.info("All API keys exhausted.")
                        return None
            else:
                logger.info(f"Error with API key index {current_groq_key_index}: {error_message}")
                return None
    






# Modified langchain_csv_chat with thread-safe key rotation
def langchain_csv_chat(csv_url: str, question: str, chart_required: bool):
    global current_langchain_key_index, current_langchain_key_lock

    data = clean_data(csv_url)
    attempts = 0

    while attempts < len(groq_api_keys):
        with current_langchain_key_lock:
            if current_langchain_key_index >= len(groq_api_keys):
                current_langchain_key_index = 0
            api_key = groq_api_keys[current_langchain_key_index]
            current_key = current_langchain_key_index
            current_langchain_key_index += 1
            attempts += 1

        try:
            llm = ChatGroq(model=model_name, api_key=api_key)
            tool = PythonAstREPLTool(locals={
                "df": data,
                "pd": pd,
                "np": np,
                "plt": plt,
                "sns": sns,
                "matplotlib": matplotlib
            })

            agent = create_pandas_dataframe_agent(
                llm,
                data,
                agent_type="tool-calling",
                verbose=True,
                allow_dangerous_code=True,
                extra_tools=[tool],
                return_intermediate_steps=True
            )

            prompt = _prompt_generator(question, chart_required, csv_url)
            result = agent.invoke({"input": prompt})
            return result.get("output")

        except Exception as e:
            logger.info(f"Error with key index {current_key}: {str(e)}")

    # If all keys are exhausted, return None
    logger.info("All API keys have been exhausted.")
    return None


def handle_out_of_range_float(value):
    if isinstance(value, float):
        if np.isnan(value):
            return None
        elif np.isinf(value):
            return "Infinity"
    return value







# CHART CODING STARTS FROM HERE

instructions = """

- Please ensure that each value is clearly visible, You may need to adjust the font size, rotate the labels, or use truncation to improve readability (if needed).
- For multiple charts, arrange them in a grid format (2x2, 3x3, etc.)
- Use colorblind-friendly palette
- Read above instructions and follow them.

"""

# Thread-safe configuration for chart endpoints
current_groq_chart_key_index = 0
current_groq_chart_lock = threading.Lock()

current_langchain_chart_key_index = 0
current_langchain_chart_lock = threading.Lock()

def model():
    global current_groq_chart_key_index, current_groq_chart_lock
    with current_groq_chart_lock:
        if current_groq_chart_key_index >= len(groq_api_keys):
            raise Exception("All API keys exhausted for chart generation")
        api_key = groq_api_keys[current_groq_chart_key_index]
    return ChatGroq(model=model_name, api_key=api_key)

def groq_chart(csv_url: str, question: str):
    global current_groq_chart_key_index, current_groq_chart_lock
    
    for attempt in range(len(groq_api_keys)):
        try:
            # Clean cache before processing
            cache_db_path = "/workspace/cache/cache_db_0.11.db"
            if os.path.exists(cache_db_path):
                try:
                    os.remove(cache_db_path)
                except Exception as e:
                    logger.info(f"Cache cleanup error: {e}")

            data = clean_data(csv_url)
            with current_groq_chart_lock:
                current_api_key = groq_api_keys[current_groq_chart_key_index]
            
            llm = ChatGroq(model=model_name, api_key=current_api_key)
            
            # Generate unique filename using UUID
            chart_filename = f"chart_{uuid.uuid4()}.png"
            chart_path = os.path.join("generated_charts", chart_filename)
            
            # Configure SmartDataframe with chart settings
            df = SmartDataframe(
                data,
                config={
                    'llm': llm,
                    'save_charts': True,  # Enable chart saving
                    'open_charts': False,
                    'save_charts_path': os.path.dirname(chart_path),  # Directory to save
                    'custom_chart_filename': chart_filename  # Unique filename
                }
            )
            
            answer = df.chat(question + instructions)
            
            if process_answer(answer):
                return "Chart not generated"
            return answer

        except Exception as e:
            error = str(e)
            if "429" in error:
                with current_groq_chart_lock:
                    current_groq_chart_key_index = (current_groq_chart_key_index + 1) % len(groq_api_keys)
            else:
                logger.info(f"Chart generation error: {error}")
                return {"error": error}
    
    logger.info("All API keys exhausted for chart generation") 
    return None



def langchain_csv_chart(csv_url: str, question: str, chart_required: bool):
    global current_langchain_chart_key_index, current_langchain_chart_lock
    
    data = clean_data(csv_url)

    for attempt in range(len(groq_api_keys)):
        try:
            with current_langchain_chart_lock:
                api_key = groq_api_keys[current_langchain_chart_key_index]
                current_key = current_langchain_chart_key_index
                current_langchain_chart_key_index = (current_langchain_chart_key_index + 1) % len(groq_api_keys)

            llm = ChatGroq(model=model_name, api_key=api_key)
            tool = PythonAstREPLTool(locals={
                "df": data,
                "pd": pd,
                "np": np,
                "plt": plt,
                "sns": sns,
                "matplotlib": matplotlib,
                "uuid": uuid
            })

            agent = create_pandas_dataframe_agent(
                llm,
                data,
                agent_type="tool-calling",
                verbose=True,
                allow_dangerous_code=True,
                extra_tools=[tool],
                return_intermediate_steps=True
            )

            result = agent.invoke({"input": _prompt_generator(question, True, csv_url)})
            output = result.get("output", "")

            # Verify chart file creation
            chart_files = extract_chart_filenames(output)
            if len(chart_files) > 0:
                return chart_files

            if attempt < len(groq_api_keys) - 1:
                logger.info(f"Langchain chart error (key {current_key}): {output}")

        except Exception as e:
            logger.info(f"Langchain chart error (key {current_key}): {str(e)}")
    
    logger.info("All API keys exhausted for chart generation")
    return None




####################################### Orchestrator Function for Chat #######################################

async def csv_chat(csv_url: str, query: str) -> dict:
    """
    Generate a response based on the provided CSV URL and query.
    Prioritizes LangChain-Gemini first, then falls back to LangChain-Groq.
    
    Parameters:
    - csv_url (str): The URL of the CSV file.
    - query (str): The query for generating the response.
    
    Returns:
    - dict: A dictionary containing the generated response or error message.
    
    Example:
    - csv_url: "https://example.com/data.csv"
    - query: "What is the total sales for the year 2022?"
    Returns:
    - dict: {"answer": "The total sales for 2022 is $100,000."}
    """
    updated_query = f"{query} and Do not show any charts or graphs."
    error_messages = []
    
    # --- 1. First Attempt: LangChain Gemini ---
    try:
        gemini_answer = await asyncio.to_thread(
            langchain_gemini_csv_handler, csv_url, updated_query, False
        )
        logger.info(f"LangChain-Gemini answer: {gemini_answer}")
        
        if gemini_answer and is_valid_response(gemini_answer):
            return {"answer": jsonable_encoder(gemini_answer)}
        
        error_messages.append("LangChain-Gemini response not usable")
    except Exception as gemini_error:
        error_messages.append(f"LangChain-Gemini error: {str(gemini_error)}")
        logger.error(f"LangChain-Gemini failed: {str(gemini_error)}")
    
    # --- 2. Fallback Attempt: LangChain Groq ---
    try:
        lang_groq_answer = await asyncio.to_thread(
            langchain_csv_chat, csv_url, updated_query, False
        )
        logger.info(f"LangChain-Groq answer: {lang_groq_answer}")
        
        if lang_groq_answer and is_valid_response(lang_groq_answer):
            return {"answer": jsonable_encoder(lang_groq_answer)}
        
        error_messages.append("LangChain-Groq response not usable")
    except Exception as lang_groq_error:
        error_messages.append(f"LangChain-Groq error: {str(lang_groq_error)}")
        logger.error(f"LangChain-Groq failed: {str(lang_groq_error)}")
    
    # --- Final Fallback when all attempts fail ---
    logger.error(f"All attempts failed. Errors: {'; '.join(error_messages)}")
    return {"answer": "Sorry, I couldn't process your request with the available data."}

def is_valid_response(response) -> bool:
    """Check if the response is valid and not empty."""
    if not response:
        return False
    if isinstance(response, str) and response.strip() == "":
        return False
    if isinstance(response, dict) and not response.get("answer"):
        return False
    return True




####################################### Orchestrator Function for Chart #######################################


async def csv_chart(csv_url: str, query: str, chat_id: str) -> Dict[str, str]:
    """
    Generate a chart based on the provided CSV URL and query.
    Prioritizes LangChain-Gemini first, then falls back to LangChain-Groq.
    
    Parameters:
    - csv_url (str): URL of the CSV file
    - query (str): Query for generating the chart
    - chat_id (str): Chat session ID for file storage
    
    Returns:
    - dict: Either {"image_url": "url"} on success or {"error": "message"} on failure
    
    Example:
    - csv_url: "https://example.com/data.csv"
    - query: "Show sales trends as line chart"
    Returns:
    - dict: {"image_url": "https://storage.example.com/chart_uuid.png"}
    """
    error_messages = []
    
    async def upload_and_return(image_path: str) -> Dict[str, str]:
        """Handle image upload and return public URL"""
        unique_name = f'{uuid.uuid4()}.png'
        public_url = await upload_file_to_supabase(image_path, unique_name, chat_id)
        logger.info(f"Uploaded chart to: {public_url}")
        try:
            os.remove(image_path)
        except OSError as e:
            logger.warning(f"Could not delete temp file {image_path}: {str(e)}")
        return {"image_url": public_url}

    # --- 1. First Attempt: LangChain Gemini ---
    try:
        gemini_result = await asyncio.to_thread(
            langchain_gemini_csv_handler, csv_url, query, True
        )
        logger.info(f"LangChain-Gemini chart result: {gemini_result}")
        
        if gemini_result:
            # Handle string or list response
            if isinstance(gemini_result, str):
                clean_path = gemini_result.strip()
                if os.path.exists(clean_path):
                    return await upload_and_return(clean_path)
            
            if isinstance(gemini_result, list) and gemini_result:
                first_path = gemini_result[0]
                if os.path.exists(first_path):
                    return await upload_and_return(first_path)
        
        error_messages.append("LangChain-Gemini returned invalid result")
    except Exception as gemini_error:
        error_messages.append(f"LangChain-Gemini error: {str(gemini_error)}")
        logger.error(f"Gemini chart failed: {str(gemini_error)}")

    # --- 2. Fallback Attempt: LangChain Groq ---
    try:
        lc_groq_paths = await asyncio.to_thread(
            langchain_csv_chart, csv_url, query, True
        )
        logger.info(f"LangChain-Groq chart result: {lc_groq_paths}")
        
        if lc_groq_paths:
            if isinstance(lc_groq_paths, list) and lc_groq_paths:
                first_path = lc_groq_paths[0]
                if os.path.exists(first_path):
                    return await upload_and_return(first_path)
            
            if isinstance(lc_groq_paths, str) and os.path.exists(lc_groq_paths):
                return await upload_and_return(lc_groq_paths)
        
        error_messages.append("LangChain-Groq returned invalid result")
    except Exception as lc_groq_error:
        error_messages.append(f"LangChain-Groq error: {str(lc_groq_error)}")
        logger.error(f"Groq chart failed: {str(lc_groq_error)}")

    # --- Final Error Handling ---
    logger.error(f"All chart generation failed. Errors: {'; '.join(error_messages)}")
    return {"error": "Could not generate chart from the provided data"}