File size: 4,717 Bytes
d7d1d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import pandas as pd
import json
from typing import List, Literal, Optional
from pydantic import BaseModel
from dotenv import load_dotenv
from pydantic_ai import Agent
from csv_service import clean_data
from python_code_executor_service import PythonExecutor
from together_ai_instance_provider import InstanceProvider

load_dotenv()

instance_provider = InstanceProvider()

class CodeResponse(BaseModel):
    """Container for code-related responses"""
    language: str = "python"
    code: str

class ChartSpecification(BaseModel):
    """Details about requested charts"""
    image_description: str
    code: Optional[str] = None

class AnalysisOperation(BaseModel):
    """Container for a single analysis operation with its code and result"""
    code: CodeResponse
    description: str

class CsvChatResult(BaseModel):
    """Structured response for CSV-related AI interactions"""
    response_type: Literal["casual", "data_analysis", "visualization", "mixed"]
    
    # Casual chat response
    casual_response: str
    
    # Data analysis components
    analysis_operations: List[AnalysisOperation]
    
    # Visualization components
    charts: Optional[List[ChartSpecification]] = None
    
    
def get_csv_info(df: pd.DataFrame) -> dict:
    """Get metadata/info about the CSV"""
    info = {
        'num_rows': len(df),
        'num_cols': len(df.columns),
        'example_rows': df.head(2).to_dict('records'),
        'dtypes': {col: str(df[col].dtype) for col in df.columns},
        'columns': list(df.columns),
        'numeric_columns': [col for col in df.columns if pd.api.types.is_numeric_dtype(df[col])],
        'categorical_columns': [col for col in df.columns if pd.api.types.is_string_dtype(df[col])]
    }
    return info


def get_csv_system_prompt(df: pd.DataFrame) -> str:
    """Generate system prompt for CSV analysis"""
    csv_info = get_csv_info(df)
    
    prompt = f"""
You're a CSV analysis assistant. The pandas DataFrame is loaded as 'df' - use this variable.

CSV Info:
- Rows: {csv_info['num_rows']}, Cols: {csv_info['num_cols']}
- Columns: {csv_info['columns']}
- Sample: {csv_info['example_rows']}
- Dtypes: {csv_info['dtypes']}

Strict Rules:
1. Never recreate 'df' - use the existing variable
2. For analysis:
   - Include necessary imports (except pandas) and include complete code
   - Use df directly (e.g., print(df[...].mean()))
3. For visualizations:
   - Specify chart type and include complete code
   - Example: plt.bar(df['x'], df['y'])
4. For Lists and Dictionaries, return them as JSON

Example:
import json
print(json.dumps(df[df['col'] == 'val'].to_dict('records'), indent=2))
"""
    return prompt


def create_csv_agent(df: pd.DataFrame, max_retries: int = 1) -> Agent:
    """Create and return a CSV analysis agent with API key rotation"""
    csv_system_prompt = get_csv_system_prompt(df)
    
    for attempt in range(max_retries):
        try:
            model = instance_provider.get_instance()
            if model is None:
                raise RuntimeError("No available API instances")
            
            csv_agent = Agent(
                model=model,
                output_type=CsvChatResult,
                system_prompt=csv_system_prompt,
            )
        
            return csv_agent
            
        except Exception as e:
            api_key = instance_provider.get_api_key_for_model(model)
            if api_key:
                print(f"Error with API key (attempt {attempt + 1}): {str(e)}")
                instance_provider.report_error(api_key)
            continue
    
    raise RuntimeError(f"Failed to create agent after {max_retries} attempts")


async def query_csv_agent(csv_url: str, question: str) -> str:
    """Query the CSV agent with a DataFrame and question and return formatted output"""
    
    # Get the DataFrame from the CSV URL
    df = clean_data(csv_url)
    
    # Create agent and get response
    agent = create_csv_agent(df)
    result = await agent.run(question)
    
    # Process the response through PythonExecutor
    executor = PythonExecutor(df)
    
    # Convert the raw output to CsvChatResult if needed
    if not isinstance(result.output, CsvChatResult):
        # Handle case where output needs conversion
        try:
            response_data = result.output if isinstance(result.output, dict) else json.loads(result.output)
            chat_result = CsvChatResult(**response_data)
        except Exception as e:
            raise ValueError(f"Could not parse agent response: {str(e)}")
    else:
        chat_result = result.output
    
    # Process and format the response
    formatted_output = executor.process_response(chat_result)
    
    return formatted_output