File size: 28,364 Bytes
363526f 27ef145 363526f 8a7f2d8 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 8a7f2d8 363526f 8a7f2d8 363526f 8a7f2d8 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f a9c6d67 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 363526f 27ef145 d784ff5 363526f 8a7f2d8 363526f 8a7f2d8 363526f d784ff5 363526f 00262e5 363526f d784ff5 363526f 00262e5 363526f 8a7f2d8 363526f 00262e5 363526f f27d668 363526f f27d668 27ef145 363526f 30e7daa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
import json
import numpy as np
import pandas as pd
import re
import os
import uuid
import logging
from io import StringIO
import sys
import traceback
from typing import Optional, Dict, Any, List
from pydantic import BaseModel, Field
from google.generativeai import GenerativeModel, configure
from dotenv import load_dotenv
import seaborn as sns
import datetime as dt
from supabase_service import upload_file_to_supabase
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
load_dotenv()
API_KEYS = os.getenv("GEMINI_API_KEYS", "").split(",")[::-1]
MODEL_NAME = 'gemini-2.0-flash'
class FileProps(BaseModel):
fileName: str
filePath: str
fileType: str # 'csv' | 'image'
class Files(BaseModel):
csv_files: List[FileProps]
image_files: List[FileProps]
class FileBoxProps(BaseModel):
files: Files
os.environ['MPLBACKEND'] = 'agg'
import matplotlib.pyplot as plt
plt.show = lambda: None
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class GeminiKeyManager:
"""Manage multiple Gemini API keys with failover"""
def __init__(self, api_keys: List[str]):
self.original_keys = api_keys.copy()
self.available_keys = api_keys.copy()
self.active_key = None
self.failed_keys = {}
def configure(self) -> bool:
while self.available_keys:
key = self.available_keys.pop(0)
try:
configure(api_key=key)
self.active_key = key
logger.info(f"Configured with key: {self._mask_key(key)}")
return True
except Exception as e:
self.failed_keys[key] = str(e)
logger.error(f"Key failed: {self._mask_key(key)}. Error: {str(e)}")
logger.critical("All API keys failed")
return False
def _mask_key(self, key: str) -> str:
return f"{key[:8]}...{key[-4:]}" if key else ""
class PythonREPL:
"""Secure Python REPL with file generation tracking"""
def __init__(self, df: pd.DataFrame):
self.df = df
self.output_dir = os.path.abspath(f'generated_outputs/{uuid.uuid4()}')
os.makedirs(self.output_dir, exist_ok=True)
self.local_env = {
"pd": pd,
"df": self.df.copy(),
"plt": plt,
"os": os,
"uuid": uuid,
"sns": sns,
"json": json,
"dt": dt,
"output_dir": self.output_dir
}
def execute(self, code: str) -> Dict[str, Any]:
print('Executing code...', code)
old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()
file_tracker = {
'csv_files': set(),
'image_files': set()
}
try:
code = f"""
import matplotlib.pyplot as plt
plt.switch_backend('agg')
{code}
plt.close('all')
"""
exec(code, self.local_env)
self.df = self.local_env.get('df', self.df)
# Track generated files
for fname in os.listdir(self.output_dir):
if fname.endswith('.csv'):
file_tracker['csv_files'].add(fname)
elif fname.lower().endswith(('.png', '.jpg', '.jpeg')):
file_tracker['image_files'].add(fname)
error = False
except Exception as e:
error_msg = traceback.format_exc()
error = True
finally:
sys.stdout = old_stdout
return {
"output": mystdout.getvalue(),
"error": error,
"error_message": error_msg if error else None,
"df": self.local_env.get('df', self.df),
"output_dir": self.output_dir,
"files": {
"csv": [os.path.join(self.output_dir, f) for f in file_tracker['csv_files']],
"images": [os.path.join(self.output_dir, f) for f in file_tracker['image_files']]
}
}
class RethinkAgent(BaseModel):
df: pd.DataFrame
max_retries: int = Field(default=5, ge=1)
gemini_model: Optional[GenerativeModel] = None
current_retry: int = Field(default=0, ge=0)
repl: Optional[PythonREPL] = None
key_manager: Optional[GeminiKeyManager] = None
class Config:
arbitrary_types_allowed = True
def _extract_code(self, response: str) -> str:
code_match = re.search(r'```python(.*?)```', response, re.DOTALL)
return code_match.group(1).strip() if code_match else response.strip()
def _generate_initial_prompt(self, query: str) -> str:
return f"""Generate DIRECT EXECUTION CODE (no functions, no explanations) following STRICT RULES:
MANDATORY REQUIREMENTS:
1. Operate directly on existing 'df' variable
2. Save ALL final DataFrames to CSV using: df.to_csv(f'{{output_dir}}/descriptive_name.csv')
3. For visualizations: plt.savefig(f'{{output_dir}}/chart_name.png')
4. Use EXACTLY this structure:
# Data processing
df_processed = df[...] # filtering/grouping
# Save results
df_processed.to_csv(f'{{output_dir}}/result.csv')
# Visualizations (if needed)
plt.figure()
... plotting code ...
plt.savefig(f'{{output_dir}}/chart.png')
plt.close()
FORBIDDEN:
- Function definitions
- Dummy data creation
- Any code blocks besides pandas operations and matplotlib
- Print statements showing dataframes
- Using any visualization library other than matplotlib or seaborn
DATAFRAME COLUMNS: {', '.join(self.df.columns)}
DATAFRAME'S FIRST FIVE ROWS: {self.df.head().to_dict('records')}
USER QUERY: {query}
EXAMPLE RESPONSE FOR "Sales by region":
# Data processing
sales_by_region = df.groupby('region')['sales'].sum().reset_index()
# Save results
sales_by_region.to_csv(f'{{output_dir}}/sales_by_region.csv')
"""
def _generate_retry_prompt(self, query: str, error: str, code: str) -> str:
return f"""FIX THIS CODE (failed with: {error}) by STRICTLY FOLLOWING:
1. REMOVE ALL FUNCTION DEFINITIONS
2. ENSURE DIRECT DF OPERATIONS
3. USE EXPLICIT output_dir PATHS
4. ADD NECESSARY IMPORTS IF MISSING
5. VALIDATE COLUMN NAMES EXIST
BAD CODE:
{code}
CORRECTED CODE:"""
def initialize_model(self, api_keys: List[str]) -> bool:
self.key_manager = GeminiKeyManager(api_keys)
if not self.key_manager.configure():
raise RuntimeError("API key initialization failed")
try:
self.gemini_model = GenerativeModel(MODEL_NAME)
return True
except Exception as e:
logger.error(f"Model init failed: {str(e)}")
return False
def generate_code(self, query: str, error: Optional[str] = None, previous_code: Optional[str] = None) -> str:
prompt = self._generate_retry_prompt(query, error, previous_code) if error else self._generate_initial_prompt(query)
try:
response = self.gemini_model.generate_content(prompt)
return self._extract_code(response.text)
except Exception as e:
if self.key_manager.available_keys and self.key_manager.configure():
return self.generate_code(query, error, previous_code)
raise
def execute_query(self, query: str) -> Dict[str, Any]:
self.repl = PythonREPL(self.df)
result = None
while self.current_retry < self.max_retries:
try:
code = self.generate_code(query,
result["error_message"] if result else None,
result["code"] if result else None)
execution_result = self.repl.execute(code)
if execution_result["error"]:
self.current_retry += 1
result = {
"error_message": execution_result["error_message"],
"code": code
}
else:
return {
"text": execution_result["output"],
"csv_files": execution_result["files"]["csv"],
"image_files": execution_result["files"]["images"]
}
except Exception as e:
return {
"error": f"Critical failure: {str(e)}",
"csv_files": [],
"image_files": []
}
return {
"error": f"Failed after {self.max_retries} retries",
"csv_files": [],
"image_files": []
}
def gemini_llm_chat(csv_url: str, query: str) -> Dict[str, Any]:
try:
df = pd.read_csv(csv_url)
agent = RethinkAgent(df=df)
if not agent.initialize_model(API_KEYS):
return {"error": "API configuration failed"}
result = agent.execute_query(query)
if "error" in result:
return result
return {
"message": result["text"],
"csv_files": result["csv_files"],
"image_files": result["image_files"]
}
except Exception as e:
logger.error(f"Processing failed: {str(e)}")
return {
"error": f"Processing error: {str(e)}",
"csv_files": [],
"image_files": []
}
async def generate_csv_report(csv_url: str, query: str, chat_id: str) -> FileBoxProps:
try:
result = gemini_llm_chat(csv_url, query)
logger.info(f"Raw result from gemini_llm_chat: {result}")
csv_files = []
image_files = []
# Check if we got the expected response structure
if isinstance(result, dict) and 'csv_files' in result and 'image_files' in result:
# Process CSV files
for csv_path in result['csv_files']:
if os.path.exists(csv_path):
file_name = os.path.basename(csv_path)
try:
unique_file_name = f"{uuid.uuid4()}_{file_name}"
public_url = await upload_file_to_supabase(
file_path=csv_path,
file_name=unique_file_name,
chat_id=chat_id
)
csv_files.append(FileProps(
fileName=file_name,
filePath=public_url,
fileType="csv"
))
os.remove(csv_path) # Clean up
except Exception as upload_error:
logger.error(f"Failed to upload CSV {file_name}: {str(upload_error)}")
continue
# Process image files
for img_path in result['image_files']:
if os.path.exists(img_path):
file_name = os.path.basename(img_path)
try:
unique_file_name = f"{uuid.uuid4()}_{file_name}"
public_url = await upload_file_to_supabase(
file_path=img_path,
file_name=unique_file_name,
chat_id=chat_id
)
image_files.append(FileProps(
fileName=file_name,
filePath=public_url,
fileType="image"
))
os.remove(img_path) # Clean up
except Exception as upload_error:
logger.error(f"Failed to upload image {file_name}: {str(upload_error)}")
continue
return FileBoxProps(
files=Files(
csv_files=csv_files,
image_files=image_files
)
)
else:
raise ValueError("Unexpected response format from gemini_llm_chat")
except Exception as e:
logger.error(f"Report generation failed: {str(e)}")
# Return empty response but log the files we found
if 'csv_files' in locals() and 'image_files' in locals():
logger.info(f"Files that were generated but not processed: CSV: {result.get('csv_files', [])}, Images: {result.get('image_files', [])}")
return FileBoxProps(
files=Files(
csv_files=[],
image_files=[]
)
)
# if __name__ == "__main__":
# result = gemini_llm_chat("./documents/enterprise_sales_data.csv",
# "Generate a detailed sales report of the last 6 months from all the aspects and include a bar chart showing the sales by region.")
# print(json.dumps(result, indent=2))
# import json
# import numpy as np
# import pandas as pd
# import re
# import os
# import uuid
# import logging
# from io import StringIO
# import sys
# import traceback
# from typing import Optional, Dict, Any, List, Tuple
# from pydantic import BaseModel, Field
# from google.api_core import exceptions as google_exceptions
# from google.generativeai import GenerativeModel, configure
# from dotenv import load_dotenv
# import seaborn as sns
# import datetime as dt
# from supabase_service import upload_file_to_supabase
# pd.set_option('display.max_columns', None)
# pd.set_option('display.max_rows', None)
# pd.set_option('display.max_colwidth', None)
# load_dotenv()
# API_KEYS = os.getenv("GEMINI_API_KEYS", "").split(",")
# MODEL_NAME = 'gemini-2.0-flash'
# class FileProps(BaseModel):
# fileName: str
# filePath: str
# fileType: str # 'csv' | 'image'
# class Files(BaseModel):
# csv_files: List[FileProps]
# image_files: List[FileProps]
# class FileBoxProps(BaseModel):
# files: Files
# os.environ['MPLBACKEND'] = 'agg'
# import matplotlib.pyplot as plt
# plt.show = lambda: None
# logging.basicConfig(
# level=logging.INFO,
# format='%(asctime)s - %(levelname)s - %(message)s'
# )
# logger = logging.getLogger(__name__)
# class GeminiInstance:
# """Wrapper for a single Gemini API instance"""
# def __init__(self, api_key: str):
# self.api_key = api_key
# self.model = None
# self.active = False
# self.failure_count = 0
# self.last_error = None
# def initialize(self) -> bool:
# try:
# configure(api_key=self.api_key)
# self.model = GenerativeModel(MODEL_NAME)
# self.active = True
# logger.info(f"Initialized Gemini instance with key: {self._mask_key()}")
# return True
# except Exception as e:
# self.last_error = str(e)
# self.failure_count += 1
# logger.error(f"Failed to initialize Gemini instance: {self._mask_key()}. Error: {str(e)}")
# return False
# def _mask_key(self) -> str:
# return f"{self.api_key[:8]}...{self.api_key[-4:]}" if self.api_key else "None"
# def generate_content(self, prompt: str) -> Tuple[Optional[str], Optional[Exception]]:
# try:
# response = self.model.generate_content(prompt)
# return response.text, None
# except Exception as e:
# self.last_error = str(e)
# self.failure_count += 1
# return None, e
# class GeminiPool:
# """Pool of Gemini API instances with automatic failover"""
# def __init__(self, api_keys: List[str]):
# self.instances = [GeminiInstance(key) for key in api_keys]
# self.current_index = 0
# self.total_attempts = 0
# def get_active_instance(self) -> Optional[GeminiInstance]:
# """Get next available instance with automatic rotation"""
# if not self.instances:
# return None
# for _ in range(len(self.instances)):
# instance = self.instances[self.current_index]
# self.current_index = (self.current_index + 1) % len(self.instances)
# self.total_attempts += 1
# if instance.active or instance.initialize():
# return instance
# return None
# def should_retry(self, error: Exception) -> bool:
# """Determine if the error is retryable"""
# if isinstance(error, google_exceptions.ResourceExhausted):
# return True
# if isinstance(error, google_exceptions.TooManyRequests):
# return True
# if isinstance(error, google_exceptions.ServiceUnavailable):
# return True
# error_str = str(error).lower()
# retry_phrases = [
# 'quota',
# 'limit',
# 'exhausted',
# 'retry',
# 'unavailable',
# 'overloaded',
# '429',
# '503'
# ]
# return any(phrase in error_str for phrase in retry_phrases)
# class PythonREPL:
# """Secure Python REPL with file generation tracking"""
# def __init__(self, df: pd.DataFrame):
# self.df = df
# self.output_dir = os.path.abspath(f'generated_outputs/{uuid.uuid4()}')
# os.makedirs(self.output_dir, exist_ok=True)
# self.local_env = {
# "pd": pd,
# "df": self.df.copy(),
# "plt": plt,
# "os": os,
# "uuid": uuid,
# "sns": sns,
# "json": json,
# "dt": dt,
# "output_dir": self.output_dir
# }
# def execute(self, code: str) -> Dict[str, Any]:
# old_stdout = sys.stdout
# sys.stdout = mystdout = StringIO()
# file_tracker = {
# 'csv_files': set(),
# 'image_files': set()
# }
# try:
# code = f"""
# import matplotlib.pyplot as plt
# plt.switch_backend('agg')
# {code}
# plt.close('all')
# """
# exec(code, self.local_env)
# self.df = self.local_env.get('df', self.df)
# # Track generated files
# for fname in os.listdir(self.output_dir):
# if fname.endswith('.csv'):
# file_tracker['csv_files'].add(fname)
# elif fname.lower().endswith(('.png', '.jpg', '.jpeg')):
# file_tracker['image_files'].add(fname)
# error = False
# error_msg = None
# except Exception as e:
# error_msg = traceback.format_exc()
# error = True
# finally:
# sys.stdout = old_stdout
# return {
# "output": mystdout.getvalue(),
# "error": error,
# "error_message": error_msg if error else None,
# "df": self.local_env.get('df', self.df),
# "output_dir": self.output_dir,
# "files": {
# "csv": [os.path.join(self.output_dir, f) for f in file_tracker['csv_files']],
# "images": [os.path.join(self.output_dir, f) for f in file_tracker['image_files']]
# }
# }
# class RethinkAgent(BaseModel):
# df: pd.DataFrame
# max_retries: int = Field(default=5, ge=1)
# current_retry: int = Field(default=0, ge=0)
# repl: Optional[PythonREPL] = None
# gemini_pool: Optional[GeminiPool] = None
# class Config:
# arbitrary_types_allowed = True
# def _extract_code(self, response: str) -> str:
# code_match = re.search(r'```python(.*?)```', response, re.DOTALL)
# return code_match.group(1).strip() if code_match else response.strip()
# def _generate_initial_prompt(self, query: str) -> str:
# return f"""Generate DIRECT EXECUTION CODE (no functions, no explanations) following STRICT RULES:
# MANDATORY REQUIREMENTS:
# 1. Operate directly on existing 'df' variable
# 2. Save ALL final DataFrames to CSV using: df.to_csv(f'{{output_dir}}/descriptive_name.csv')
# 3. For visualizations: plt.savefig(f'{{output_dir}}/chart_name.png')
# 4. Use EXACTLY this structure:
# # Data processing
# df_processed = df[...] # filtering/grouping
# # Save results
# df_processed.to_csv(f'{{output_dir}}/result.csv')
# # Visualizations (if needed)
# plt.figure()
# ... plotting code ...
# plt.savefig(f'{{output_dir}}/chart.png')
# plt.close()
# FORBIDDEN:
# - Function definitions
# - Dummy data creation
# - Any code blocks besides pandas operations and matplotlib
# - Print statements showing dataframes
# DATAFRAME COLUMNS: {', '.join(self.df.columns)}
# DATAFRAME'S FIRST FIVE ROWS: {self.df.head().to_dict('records')}
# USER QUERY: {query}
# EXAMPLE RESPONSE FOR "Sales by region":
# # Data processing
# sales_by_region = df.groupby('region')['sales'].sum().reset_index()
# # Save results
# sales_by_region.to_csv(f'{{output_dir}}/sales_by_region.csv')
# """
# def _generate_retry_prompt(self, query: str, error: str, code: str) -> str:
# return f"""FIX THIS CODE (failed with: {error}) by STRICTLY FOLLOWING:
# 1. REMOVE ALL FUNCTION DEFINITIONS
# 2. ENSURE DIRECT DF OPERATIONS
# 3. USE EXPLICIT output_dir PATHS
# 4. ADD NECESSARY IMPORTS IF MISSING
# 5. VALIDATE COLUMN NAMES EXIST
# BAD CODE:
# {code}
# CORRECTED CODE:"""
# def initialize_pool(self) -> bool:
# self.gemini_pool = GeminiPool(API_KEYS)
# return True
# def generate_code(self, query: str, error: Optional[str] = None, previous_code: Optional[str] = None) -> str:
# prompt = self._generate_retry_prompt(query, error, previous_code) if error else self._generate_initial_prompt(query)
# instance = self.gemini_pool.get_active_instance()
# if not instance:
# raise RuntimeError("No available Gemini instances")
# response_text, error = instance.generate_content(prompt)
# if error:
# if self.gemini_pool.should_retry(error):
# logger.warning(f"Retryable error from Gemini: {str(error)}")
# return self.generate_code(query, error, previous_code)
# raise error
# return self._extract_code(response_text)
# def execute_query(self, query: str) -> Dict[str, Any]:
# self.repl = PythonREPL(self.df)
# result = None
# while self.current_retry < self.max_retries:
# try:
# code = self.generate_code(query,
# result["error_message"] if result else None,
# result["code"] if result else None)
# execution_result = self.repl.execute(code)
# if execution_result["error"]:
# self.current_retry += 1
# result = {
# "error_message": execution_result["error_message"],
# "code": code
# }
# else:
# return {
# "text": execution_result["output"],
# "csv_files": execution_result["files"]["csv"],
# "image_files": execution_result["files"]["images"]
# }
# except Exception as e:
# return {
# "error": f"Critical failure: {str(e)}",
# "csv_files": [],
# "image_files": []
# }
# return {
# "error": f"Failed after {self.max_retries} retries",
# "csv_files": [],
# "image_files": []
# }
# def gemini_llm_chat(csv_url: str, query: str) -> Dict[str, Any]:
# try:
# df = pd.read_csv(csv_url)
# agent = RethinkAgent(df=df)
# if not agent.initialize_pool():
# return {"error": "API pool initialization failed"}
# result = agent.execute_query(query)
# if "error" in result:
# return result
# return {
# "message": result["text"],
# "csv_files": result["csv_files"],
# "image_files": result["image_files"]
# }
# except Exception as e:
# logger.error(f"Processing failed: {str(e)}", exc_info=True)
# return {
# "error": f"Processing error: {str(e)}",
# "csv_files": [],
# "image_files": []
# }
# async def generate_csv_report(csv_url: str, query: str) -> FileBoxProps:
# try:
# result = gemini_llm_chat(csv_url, query)
# logger.info(f"Raw result from gemini_llm_chat: {result}")
# csv_files = []
# image_files = []
# if isinstance(result, dict) and 'csv_files' in result and 'image_files' in result:
# # Process CSV files
# for csv_path in result['csv_files']:
# if os.path.exists(csv_path):
# file_name = os.path.basename(csv_path)
# try:
# unique_file_name = f"{uuid.uuid4()}_{file_name}"
# public_url = await upload_file_to_supabase(
# file_path=csv_path,
# file_name=unique_file_name
# )
# csv_files.append(FileProps(
# fileName=file_name,
# filePath=public_url,
# fileType="csv"
# ))
# os.remove(csv_path)
# except Exception as upload_error:
# logger.error(f"Failed to upload CSV {file_name}: {str(upload_error)}")
# continue
# # Process image files
# for img_path in result['image_files']:
# if os.path.exists(img_path):
# file_name = os.path.basename(img_path)
# try:
# unique_file_name = f"{uuid.uuid4()}_{file_name}"
# public_url = await upload_file_to_supabase(
# file_path=img_path,
# file_name=unique_file_name
# )
# image_files.append(FileProps(
# fileName=file_name,
# filePath=public_url,
# fileType="image"
# ))
# os.remove(img_path)
# except Exception as upload_error:
# logger.error(f"Failed to upload image {file_name}: {str(upload_error)}")
# continue
# return FileBoxProps(
# files=Files(
# csv_files=csv_files,
# image_files=image_files
# )
# )
# else:
# raise ValueError("Unexpected response format from gemini_llm_chat")
# except Exception as e:
# logger.error(f"Report generation failed: {str(e)}", exc_info=True)
# return FileBoxProps(
# files=Files(
# csv_files=[],
# image_files=[]
# )
# ) |