File size: 13,101 Bytes
7c5f30e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e7daa
 
 
 
 
 
 
 
7c5f30e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e7daa
 
 
 
7c5f30e
30e7daa
 
7c5f30e
 
 
30e7daa
 
 
 
 
 
2ccbdb1
30e7daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5f30e
 
 
 
 
 
 
30e7daa
7c5f30e
 
30e7daa
 
7c5f30e
30e7daa
 
7c5f30e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e7daa
 
 
 
 
 
7c5f30e
 
30e7daa
 
7c5f30e
30e7daa
7c5f30e
30e7daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
import re
import uuid
from langchain_google_genai import ChatGoogleGenerativeAI
import pandas as pd
from langchain_core.prompts import ChatPromptTemplate
from langchain_experimental.tools import PythonAstREPLTool
from langchain_experimental.agents import create_pandas_dataframe_agent
from dotenv import load_dotenv
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
import datetime as dt

# Set the backend for matplotlib to 'Agg' to avoid GUI issues
matplotlib.use('Agg')

load_dotenv()
model_name = 'gemini-2.0-flash'  # Specify the model name
google_api_keys = os.getenv("GEMINI_API_KEYS").split(",")

# Create pre-initialized LLM instances
llm_instances = [
    ChatGoogleGenerativeAI(model=model_name, api_key=key)
    for key in google_api_keys
]
current_instance_index = 0  # Track current instance being used

def create_agent(llm, data, tools):
    """Create agent with tool names"""
    return create_pandas_dataframe_agent(
        llm,
        data,
        agent_type="tool-calling",
        verbose=True,
        allow_dangerous_code=True,
        extra_tools=tools,
        return_intermediate_steps=True
    )
    
def _prompt_generator(question: str, chart_required: bool):
    chat_prompt = f"""You are a senior data analyst working with CSV data. Adhere strictly to the following guidelines:  

                     1. **Data Verification:** Always inspect the data with `.sample(5).to_dict()` before performing any analysis.  
                     2. **Data Integrity:** Ensure proper handling of null values to maintain accuracy and reliability.  
                     3. **Communication:** Provide concise, professional, and well-structured responses.
                     4. Avoid including any internal processing details or references to the methods used to generate your response (ex: based on the tool call, using the function -> These types of phrases.)

                     **Query:** {question}  
                 """               
        
    chart_prompt = f"""You are a senior data analyst working with CSV data. Follow these rules STRICTLY:

                   1. Generate ONE unique identifier FIRST using: unique_id = uuid.uuid4().hex
                   2. Visualization requirements:
                   - Adjust font sizes, rotate labels (45° if needed), truncate for readability
                   - Figure size: (12, 6)
                   - Descriptive titles (fontsize=14)
                   - Colorblind-friendly palettes
                   - Do not use any visualization library other than matplotlib or seaborn
                   3. File handling rules:
                   - Create MAXIMUM 2 charts if absolutely necessary
                   - For multiple charts:
                       * Arrange in grid format (2x1 vertical layout preferred)
                       * Use SAME unique_id with suffixes: 
                       - f"{{unique_id}}_1.png"
                       - f"{{unique_id}}_2.png"
                   - Save EXCLUSIVELY to "generated_charts" folder
                   - File naming: f"chart_{{unique_id}}.png" (for single chart)
                   4. FINAL OUTPUT MUST BE:
                   - For single chart: f"generated_charts/chart_{{unique_id}}.png"
                   - For multiple charts: f"generated_charts/chart_{{unique_id}}.png" (combined grid image)
                   - **ONLY return this full path string, nothing else**

                   **Query:** {question}

                   IMPORTANT: 
                   - Generate the unique_id FIRST before any operations
                   - Use THE SAME unique_id throughout entire process
                   - NEVER generate new UUIDs after initial creation
                   - Return EXACT filepath string of the final saved chart
                   """

    if chart_required:
        return ChatPromptTemplate.from_template(chart_prompt)
    else:
        return ChatPromptTemplate.from_template(chat_prompt)

def langchain_gemini_csv_handler(csv_url: str, question: str, chart_required: bool):
    global current_instance_index
    data = pd.read_csv(csv_url)
    
    # Try all available instances
    while current_instance_index < len(llm_instances):
        try:
            llm = llm_instances[current_instance_index]
            print(f"Using LLM instance index {current_instance_index}")

            # Create tool with validated name
            tool = PythonAstREPLTool(
                locals={
                    "df": data,
                    "pd": pd,
                    "np": np,
                    "plt": plt,
                    "sns": sns,
                    "matplotlib": matplotlib,
                    "uuid": uuid,
                    "dt": dt
                },
            )

            agent = create_agent(llm, data, [tool])
            prompt = _prompt_generator(question, chart_required)
            result = agent.invoke({"input": prompt})
            output = result.get("output")
            
            if output is None:
                raise ValueError("Received None response from agent")
                
            return output
        
        except Exception as e:
            print(f"Error using LLM instance index {current_instance_index}: {e}")
            current_instance_index += 1

    print("All LLM instances have been exhausted.")
    return None














# import os
# import re
# import uuid
# from langchain_google_genai import ChatGoogleGenerativeAI
# import pandas as pd
# from langchain_core.prompts import ChatPromptTemplate
# from langchain_experimental.tools import PythonAstREPLTool
# from langchain_experimental.agents import create_pandas_dataframe_agent
# from dotenv import load_dotenv
# import numpy as np
# import matplotlib.pyplot as plt
# import matplotlib
# import seaborn as sns
# import datetime as dt

# # Set the backend for matplotlib to 'Agg' to avoid GUI issues
# matplotlib.use('Agg')

# load_dotenv()
# model_name = 'gemini-2.0-flash'  # Specify the model name
# google_api_keys = os.getenv("GEMINI_API_KEYS").split(",")

# # Create pre-initialized LLM instances
# llm_instances = [
#     ChatGoogleGenerativeAI(model=model_name, api_key=key)
#     for key in google_api_keys
# ]
# current_instance_index = 0  # Track current instance being used

# def is_retryable_error(error: Exception) -> bool:
#     """Check if the error should trigger a retry with next instance"""
#     error_str = str(error).lower()
    
#     retry_conditions = [
#         # Rate limiting and quota errors
#         '429' in error_str,
#         'quota' in error_str,
#         'rate limit' in error_str,
#         'resource exhausted' in error_str,
#         'exceeded' in error_str,
#         'limit reached' in error_str,
        
#         # Authentication and permission errors
#         'permission denied' in error_str,
#         'invalid api key' in error_str,
#         'authentication' in error_str,
        
#         # Server errors
#         '500' in error_str,
#         '503' in error_str,
#         'service unavailable' in error_str,
        
#         # Connection issues
#         'timeout' in error_str,
#         'connection' in error_str,
        
#         # Content policy
#         'content policy' in error_str,
#         'safety' in error_str,
#         'blocked' in error_str
#     ]
    
#     return any(retry_conditions)

# def create_agent(llm, data, tools):
#     """Create agent with tool names"""
#     return create_pandas_dataframe_agent(
#         llm,
#         data,
#         agent_type="tool-calling",
#         verbose=True,
#         allow_dangerous_code=True,
#         extra_tools=tools,
#         return_intermediate_steps=True
#     )
    
# def _prompt_generator(question: str, chart_required: bool):
#     chat_prompt = f"""You are a senior data analyst working with CSV data. Adhere strictly to the following guidelines:  

#                      1. **Data Verification:** Always inspect the data with `.sample(5).to_dict()` before performing any analysis.  
#                      2. **Data Integrity:** Ensure proper handling of null values to maintain accuracy and reliability.  
#                      3. **Communication:** Provide concise, professional, and well-structured responses.
#                      4. Avoid including any internal processing details or references to the methods used to generate your response (ex: based on the tool call, using the function -> These types of phrases.)

#                      **Query:** {question}  
#                  """               
        
#     chart_prompt = f"""You are a senior data analyst working with CSV data. Follow these rules STRICTLY:

#                    1. Generate ONE unique identifier FIRST using: unique_id = uuid.uuid4().hex
#                    2. Visualization requirements:
#                    - Adjust font sizes, rotate labels (45° if needed), truncate for readability
#                    - Figure size: (12, 6)
#                    - Descriptive titles (fontsize=14)
#                    - Colorblind-friendly palettes
#                    3. File handling rules:
#                    - Create MAXIMUM 2 charts if absolutely necessary
#                    - For multiple charts:
#                        * Arrange in grid format (2x1 vertical layout preferred)
#                        * Use SAME unique_id with suffixes: 
#                        - f"{{unique_id}}_1.png"
#                        - f"{{unique_id}}_2.png"
#                    - Save EXCLUSIVELY to "generated_charts" folder
#                    - File naming: f"chart_{{unique_id}}.png" (for single chart)
#                    4. FINAL OUTPUT MUST BE:
#                    - For single chart: f"generated_charts/chart_{{unique_id}}.png"
#                    - For multiple charts: f"generated_charts/chart_{{unique_id}}.png" (combined grid image)
#                    - **ONLY return this full path string, nothing else**

#                    **Query:** {question}

#                    IMPORTANT: 
#                    - Generate the unique_id FIRST before any operations
#                    - Use THE SAME unique_id throughout entire process
#                    - NEVER generate new UUIDs after initial creation
#                    - Return EXACT filepath string of the final saved chart
#                    """

#     if chart_required:
#         return ChatPromptTemplate.from_template(chart_prompt)
#     else:
#         return ChatPromptTemplate.from_template(chat_prompt)

# def langchain_gemini_csv_handler(csv_url: str, question: str, chart_required: bool):
#     global current_instance_index
#     data = pd.read_csv(csv_url)
    
#     # Track first error in case all instances fail
#     first_error = None
    
#     while current_instance_index < len(llm_instances):
#         try:
#             llm = llm_instances[current_instance_index]
#             print(f"Attempting with LLM instance {current_instance_index + 1}/{len(llm_instances)}")

#             # Create tool with validated name
#             tool = PythonAstREPLTool(
#                 locals={
#                     "df": data,
#                     "pd": pd,
#                     "np": np,
#                     "plt": plt,
#                     "sns": sns,
#                     "matplotlib": matplotlib,
#                     "uuid": uuid,
#                     "dt": dt
#                 },
#             )

#             agent = create_agent(llm, data, [tool])
#             prompt = _prompt_generator(question, chart_required)
#             result = agent.invoke({"input": prompt})
#             output = result.get("output")
            
#             if output is None:
#                 raise ValueError("Received None response from agent")
                
#             if isinstance(output, str) and any(err in output.lower() for err in ['quota', 'limit', 'exhausted']):
#                 raise ValueError(f"API limitation detected in response: {output}")
                
#             return output
        
#         except Exception as e:
#             error_msg = f"Error with instance {current_instance_index}: {str(e)}"
#             print(error_msg)
            
#             # Store first error if not set
#             if first_error is None:
#                 first_error = error_msg
                
#             # Check if we should try next instance
#             if is_retryable_error(e):
#                 current_instance_index += 1
#                 continue
#             else:
#                 # Non-retryable error - return immediately
#                 return {
#                     "error": "Non-retryable error occurred",
#                     "details": str(e),
#                     "instance": current_instance_index
#                 }

#     # All instances exhausted
#     error_response = {
#         "error": "All API instances failed",
#         "details": first_error or "Unknown error",
#         "attempted_instances": current_instance_index
#     }
#     print(error_response)
#     return error_response