File size: 8,587 Bytes
f8d95b7
 
 
d7d1d4e
 
 
 
 
b707dc6
d7d1d4e
 
 
 
b707dc6
 
 
 
d7d1d4e
 
f8d95b7
 
 
 
b707dc6
d7d1d4e
 
 
 
 
b707dc6
d7d1d4e
 
 
 
 
b707dc6
d7d1d4e
 
 
 
 
b707dc6
d7d1d4e
 
 
 
 
 
 
b707dc6
d7d1d4e
b707dc6
d7d1d4e
1f6b1ac
d7d1d4e
 
 
 
 
 
 
 
 
 
 
 
 
b707dc6
d7d1d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b707dc6
d7d1d4e
b707dc6
d7d1d4e
b707dc6
 
 
 
d7d1d4e
b707dc6
 
 
 
 
 
 
 
 
 
 
d7d1d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8d95b7
d7d1d4e
f8d95b7
d7d1d4e
 
 
 
f8d95b7
d7d1d4e
 
f8d95b7
d7d1d4e
 
 
 
 
f8d95b7
d7d1d4e
 
 
f8d95b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7d1d4e
f8d95b7
 
 
 
d7d1d4e
f8d95b7
 
 
d7d1d4e
f8d95b7
 
 
 
d7d1d4e
f8d95b7
 
d7d1d4e
f8d95b7
 
 
 
d7d1d4e
f8d95b7
 
d7d1d4e
f8d95b7
 
 
12c1c02
f8d95b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
from supabase import create_client, Client
from dotenv import load_dotenv
import uuid
import matplotlib.pyplot as plt
from pathlib import Path
from typing import Dict, Any, List, Optional
import pandas as pd
import numpy as np
import json
import io
import contextlib
import traceback
import time
from datetime import datetime, timedelta
import seaborn as sns
import scipy.stats as stats
from pydantic import BaseModel

from supabase_service import upload_file_to_supabase

# Load environment variables from .env file
load_dotenv()

class CodeResponse(BaseModel):
    """Container for code-related responses"""
    language: str = "python"
    code: str


class ChartSpecification(BaseModel):
    """Details about requested charts"""
    image_description: str
    code: Optional[str] = None


class AnalysisOperation(BaseModel):
    """Container for a single analysis operation with its code and result"""
    code: CodeResponse
    description: str


class CsvChatResult(BaseModel):
    """Structured response for CSV-related AI interactions"""
    response_type: str  # Literal["casual", "data_analysis", "visualization", "mixed"]
    casual_response: str
    analysis_operations: List[AnalysisOperation]
    charts: Optional[List[ChartSpecification]] = None


class PythonExecutor:
    """Handles execution of Python code with comprehensive data analysis libraries"""
    
    def __init__(self, df: pd.DataFrame, charts_folder: str = "generated_charts"):
        """
        Initialize the PythonExecutor with a DataFrame
        
        Args:
            df (pd.DataFrame): The DataFrame to operate on
            charts_folder (str): Folder to save charts in
        """
        self.df = df
        self.charts_folder = Path(charts_folder)
        self.charts_folder.mkdir(exist_ok=True)
        
    def execute_code(self, code: str) -> Dict[str, Any]:
        """
        Execute Python code with full data analysis context and return results
        
        Args:
            code (str): Python code to execute
            
        Returns:
            dict: Dictionary containing execution results and any generated plots
        """
        output = ""
        error = None
        plots = []
        
        # Capture stdout
        stdout = io.StringIO()
        
        # Monkey patch plt.show() to save figures
        original_show = plt.show
        
        def custom_show():
            """Custom show function that saves plots instead of displaying them"""
            for i, fig in enumerate(plt.get_fignums()):
                figure = plt.figure(fig)
                # Save plot to bytes buffer
                buf = io.BytesIO()
                figure.savefig(buf, format='png', bbox_inches='tight')
                buf.seek(0)
                plots.append(buf.read())
            plt.close('all')
        
        try:
            # Create comprehensive execution context with data analysis libraries
            exec_globals = {
                # Core data analysis
                'pd': pd,
                'np': np,
                'df': self.df,
                
                # Visualization
                'plt': plt,
                'sns': sns,
                
                # Statistics
                'stats': stats,
                
                # Date/time
                'datetime': datetime,
                'timedelta': timedelta,
                'time': time,
                
                # Utilities
                'json': json,
                '__builtins__': __builtins__,
            }
            
            # Replace plt.show with custom implementation
            plt.show = custom_show
            
            # Execute code and capture output
            with contextlib.redirect_stdout(stdout):
                exec(code, exec_globals)
            
            output = stdout.getvalue()
            
        except Exception as e:
            error = {
                "message": str(e),
                "traceback": traceback.format_exc()
            }
        finally:
            # Restore original plt.show
            plt.show = original_show
            
        return {
            'output': output,
            'error': error,
            'plots': plots
        }
    
    async def save_plot_to_supabase(self, plot_data: bytes, description: str, chat_id: str) -> str:
        """
        Save plot to Supabase storage and return the public URL
        
        Args:
            plot_data (bytes): Image data in bytes
            description (str): Description of the plot
            chat_id (str): ID of the chat session
            
        Returns:
            str: Public URL of the uploaded chart
        """
        # Generate unique filename
        filename = f"chart_{uuid.uuid4().hex}.png"
        filepath = self.charts_folder / filename
        
        # Save the plot locally first
        with open(filepath, 'wb') as f:
            f.write(plot_data)
            
        try:
            # Upload to Supabase
            public_url = await upload_file_to_supabase(
                file_path=str(filepath),
                file_name=filename,
                chat_id=chat_id
            )
            
            # Remove the local file after upload
            os.remove(filepath)
            
            return public_url
        except Exception as e:
            # Clean up local file if upload fails
            if os.path.exists(filepath):
                os.remove(filepath)
            raise Exception(f"Failed to upload plot to Supabase: {e}")
    
    def _looks_like_structured_data(self, output: str) -> bool:
        """Helper to detect JSON-like or array-like output"""
        output = output.strip()
        return (
            output.startswith('{') and output.endswith('}') or  # JSON object
            output.startswith('[') and output.endswith(']') or  # Array
            '\n' in output and '=' in output  # Python console output
        )
    
    async def process_response(self, response: CsvChatResult, chat_id: str) -> str:
        """
        Process the CsvChatResult response and generate formatted output
        with markdown code blocks for structured data.
        
        Args:
            response (CsvChatResult): Response from CSV analysis
            chat_id (str): ID of the chat session
            
        Returns:
            str: Formatted output with results and image URLs
        """
        output_parts = []
        
        # Add casual response
        output_parts.append(response.casual_response)
        
        # Process analysis operations
        for operation in response.analysis_operations:
            # Execute the code
            result = self.execute_code(operation.code.code)
            
            # Add operation description
            output_parts.append(f"\n{operation.description}:")
            
            # Add output or error with markdown wrapping
            if result['error']:
                output_parts.append("```python\n" + f"Error: {result['error']['message']}" + "\n```")
            else:
                output = result['output'].strip()
                if self._looks_like_structured_data(output):
                    output_parts.append("```python\n" + output + "\n```")
                else:
                    output_parts.append(output)
        
        # Process charts
        if response.charts:
            output_parts.append("\nVisualizations:")
            for chart in response.charts:
                if chart.code:
                    result = self.execute_code(chart.code)
                    if result['plots']:
                        for plot_data in result['plots']:
                            try:
                                public_url = await self.save_plot_to_supabase(
                                    plot_data=plot_data,
                                    description=chart.image_description,
                                    chat_id=chat_id
                                )
                                output_parts.append(f"\n{chart.image_description}")
                                output_parts.append(f"![{chart.image_description}]({public_url})")
                            except Exception as e:
                                output_parts.append(f"\nError uploading chart: {str(e)}")
                    elif result['error']:
                        output_parts.append("```python\n" + f"Error generating {chart.image_description}: {result['error']['message']}" + "\n```")
        
        return "\n".join(output_parts)