File size: 5,564 Bytes
d7d1d4e 837fd40 d7d1d4e 0c663c0 7f73a04 d7d1d4e 7f73a04 d7d1d4e 69a0b7f d7d1d4e 837fd40 d7d1d4e 837fd40 484c2da 837fd40 484c2da 837fd40 d7d1d4e d161b96 d7d1d4e 9d31b19 d161b96 9d31b19 a25d048 d7d1d4e 611893f a25d048 d161b96 611893f a25d048 d7d1d4e 01d3a80 d7d1d4e 5005f7f d7d1d4e 7f73a04 d7d1d4e f8d95b7 d7d1d4e 41e2747 7f73a04 d7d1d4e 1dd7d6b d7d1d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import pandas as pd
import json
from typing import List, Literal, Optional
from pydantic import BaseModel
from dotenv import load_dotenv
from pydantic_ai import Agent
from csv_service import clean_data
from python_code_executor_service import PythonExecutor
from cerebras_instance_provider import InstanceProvider
import logging
load_dotenv()
instance_provider = InstanceProvider()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class CodeResponse(BaseModel):
"""Container for code-related responses"""
language: str = "python"
code: str
class ChartSpecification(BaseModel):
"""Details about requested charts"""
image_description: str
code: Optional[str] = None
class AnalysisOperation(BaseModel):
"""Container for a single analysis operation with its code and result"""
code: CodeResponse
result_var: str
class CsvChatResult(BaseModel):
"""Structured response for CSV-related AI interactions"""
# Casual chat response
casual_response: str
# Data analysis components
# analysis_operations: List[AnalysisOperation]
analysis_operations: AnalysisOperation
# Visualization components
# charts: Optional[List[ChartSpecification]] = None
charts: Optional[ChartSpecification] = None
def get_csv_info(df: pd.DataFrame) -> dict:
"""Get metadata/info about the CSV"""
info = {
'num_rows': len(df),
'num_cols': len(df.columns),
'example_rows': df.head(2).to_dict('records'),
'dtypes': {col: str(df[col].dtype) for col in df.columns},
'columns': list(df.columns),
'numeric_columns': [col for col in df.columns if pd.api.types.is_numeric_dtype(df[col])],
'categorical_columns': [col for col in df.columns if pd.api.types.is_string_dtype(df[col])]
}
return info
def get_csv_system_prompt(df: pd.DataFrame) -> str:
"""Generate system prompt for CSV analysis"""
csv_info = get_csv_info(df)
prompt = f"""
You're a CSV analysis assistant. The pandas DataFrame is loaded as 'df' - use this variable.
CSV Info:
- Shape: {csv_info['num_rows']} rows × {csv_info['num_cols']} cols
- Columns: {csv_info['columns']}
- Sample: {csv_info['example_rows']}
- Dtypes: {csv_info['dtypes']}
STRICT REQUIREMENTS:
1. NEVER calculate or predict values yourself - ALWAYS return executable code that would produce the result
2. Use existing 'df' - never recreate it
3. For any data structures (Lists, Records, Tables, Dictionaries, etc.), always return them as JSON with correct indentation
4. For charts:
- Use matplotlib/seaborn only
- Professional quality: proper sizing, labels, titles
- Figure size: (14, 8) for complex, (12, 6) for simple
- Clear titles (fontsize=16), labels (fontsize=14)
- Rotate x-labels if needed (45°, fontsize=12)
- Add annotations/gridlines where helpful
- Use colorblind-friendly palettes
- Always include plt.tight_layout()
Example professional chart:
plt.figure(figsize=(14, 8))
sns.barplot(x='category', y='value', data=df, palette='muted')
plt.title('Value by Category', fontsize=16)
plt.xlabel('Category', fontsize=14)
plt.ylabel('Value', fontsize=14)
plt.xticks(rotation=45)
plt.grid(alpha=0.3)
plt.tight_layout()
plt.show()
Example professional response for a dataframe:
num_rows = len(df)
Return complete, executable code.
"""
return prompt
def create_csv_agent(df: pd.DataFrame, max_retries: int = 1) -> Agent:
"""Create and return a CSV analysis agent with API key rotation"""
csv_system_prompt = get_csv_system_prompt(df)
for attempt in range(max_retries):
try:
model = instance_provider.get_instance()
if model is None:
raise RuntimeError("No available API instances")
csv_agent = Agent(
model=model,
output_type=CsvChatResult,
system_prompt=csv_system_prompt,
)
return csv_agent
except Exception as e:
api_key = instance_provider.get_api_key_for_model(model)
if api_key:
logger.info(f"Error with API key (attempt {attempt + 1}): {str(e)}")
instance_provider.report_error(api_key)
continue
raise RuntimeError(f"Failed to create agent after {max_retries} attempts")
async def query_csv_agent(csv_url: str, question: str, chat_id: str) -> str:
"""Query the CSV agent with a DataFrame and question and return formatted output"""
# Get the DataFrame from the CSV URL
df = clean_data(csv_url)
# Create agent and get response
agent = create_csv_agent(df)
result = await agent.run(question)
# Process the response through PythonExecutor
executor = PythonExecutor(df)
# Convert the raw output to CsvChatResult if needed
if not isinstance(result.output, CsvChatResult):
# Handle case where output needs conversion
try:
response_data = result.output if isinstance(result.output, dict) else json.loads(result.output)
chat_result = CsvChatResult(**response_data)
except Exception as e:
raise ValueError(f"Could not parse agent response: {str(e)}")
else:
chat_result = result.output
logger.info("Chat Result Original Object:", chat_result)
# Process and format the response
formatted_output = await executor.process_response(chat_result, chat_id)
return formatted_output
|