Stylique's picture
Upload 65 files
f498ac0 verified
raw
history blame
31.8 kB
// Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAUtils.h>
#include <algorithm>
#include <string>
#define NVDR_CHECK_CUDA_ERROR(CUDA_CALL) { cudaError_t err = CUDA_CALL; AT_CUDA_CHECK(cudaGetLastError()); }
#define NVDR_CHECK_GL_ERROR(GL_CALL) { GL_CALL; GLenum err = glGetError(); TORCH_CHECK(err == GL_NO_ERROR, "OpenGL error: ", getGLErrorString(err), "[", #GL_CALL, ";]"); }
#define CHECK_TENSOR(X, DIMS, CHANNELS) \
TORCH_CHECK(X.is_cuda(), #X " must be a cuda tensor") \
TORCH_CHECK(X.scalar_type() == torch::kFloat || X.scalar_type() == torch::kBFloat16, #X " must be fp32 or bf16") \
TORCH_CHECK(X.dim() == DIMS, #X " must have " #DIMS " dimensions") \
TORCH_CHECK(X.size(DIMS - 1) == CHANNELS, #X " must have " #CHANNELS " channels")
#include "common.h"
#include "loss.h"
#include "normal.h"
#include "bsdf.h"
#include "mesh.h"
#define BLOCK_X 8
#define BLOCK_Y 8
//------------------------------------------------------------------------
// mesh.cu
void xfmPointsFwdKernel(XfmKernelParams p);
void xfmPointsBwdKernel(XfmKernelParams p);
//------------------------------------------------------------------------
// loss.cu
void imgLossFwdKernel(LossKernelParams p);
void imgLossBwdKernel(LossKernelParams p);
//------------------------------------------------------------------------
// normal.cu
void PrepareShadingNormalFwdKernel(PrepareShadingNormalKernelParams p);
void PrepareShadingNormalBwdKernel(PrepareShadingNormalKernelParams p);
//------------------------------------------------------------------------
// bsdf.cu
void LambertFwdKernel(LambertKernelParams p);
void LambertBwdKernel(LambertKernelParams p);
void FresnelShlickFwdKernel(FresnelShlickKernelParams p);
void FresnelShlickBwdKernel(FresnelShlickKernelParams p);
void ndfGGXFwdKernel(NdfGGXParams p);
void ndfGGXBwdKernel(NdfGGXParams p);
void lambdaGGXFwdKernel(NdfGGXParams p);
void lambdaGGXBwdKernel(NdfGGXParams p);
void maskingSmithFwdKernel(MaskingSmithParams p);
void maskingSmithBwdKernel(MaskingSmithParams p);
void pbrSpecularFwdKernel(PbrSpecular p);
void pbrSpecularBwdKernel(PbrSpecular p);
void pbrBSDFFwdKernel(PbrBSDF p);
void pbrBSDFBwdKernel(PbrBSDF p);
//------------------------------------------------------------------------
// Tensor helpers
void update_grid(dim3 &gridSize, torch::Tensor x)
{
gridSize.x = std::max(gridSize.x, (uint32_t)x.size(2));
gridSize.y = std::max(gridSize.y, (uint32_t)x.size(1));
gridSize.z = std::max(gridSize.z, (uint32_t)x.size(0));
}
template<typename... Ts>
void update_grid(dim3& gridSize, torch::Tensor x, Ts&&... vs)
{
gridSize.x = std::max(gridSize.x, (uint32_t)x.size(2));
gridSize.y = std::max(gridSize.y, (uint32_t)x.size(1));
gridSize.z = std::max(gridSize.z, (uint32_t)x.size(0));
update_grid(gridSize, std::forward<Ts>(vs)...);
}
Tensor make_cuda_tensor(torch::Tensor val, dim3 outDims, torch::Tensor* grad = nullptr)
{
Tensor res;
for (int i = 0; i < val.dim(); ++i)
{
res.dims[i] = val.size(i);
res.strides[i] = val.stride(i);
}
res.fp16 = val.scalar_type() == torch::kBFloat16;
res.val = res.fp16 ? (void*)val.data_ptr<torch::BFloat16>() : (void*)val.data_ptr<float>();
res.d_val = nullptr;
if (grad != nullptr)
{
if (val.dim() == 4)
*grad = torch::empty({ outDims.z, outDims.y, outDims.x, val.size(3) }, torch::TensorOptions().dtype(res.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA));
else // 3
*grad = torch::empty({ outDims.z, outDims.x, val.size(2) }, torch::TensorOptions().dtype(res.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA));
res.d_val = res.fp16 ? (void*)grad->data_ptr<torch::BFloat16>() : (void*)grad->data_ptr<float>();
}
return res;
}
//------------------------------------------------------------------------
// prepare_shading_normal
torch::Tensor prepare_shading_normal_fwd(torch::Tensor pos, torch::Tensor view_pos, torch::Tensor perturbed_nrm, torch::Tensor smooth_nrm, torch::Tensor smooth_tng, torch::Tensor geom_nrm, bool two_sided_shading, bool opengl, bool fp16)
{
CHECK_TENSOR(pos, 4, 3);
CHECK_TENSOR(view_pos, 4, 3);
CHECK_TENSOR(perturbed_nrm, 4, 3);
CHECK_TENSOR(smooth_nrm, 4, 3);
CHECK_TENSOR(smooth_tng, 4, 3);
CHECK_TENSOR(geom_nrm, 4, 3);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
PrepareShadingNormalKernelParams p;
p.two_sided_shading = two_sided_shading;
p.opengl = opengl;
p.out.fp16 = fp16;
update_grid(p.gridSize, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
// Setup tensors
p.pos = make_cuda_tensor(pos, p.gridSize);
p.view_pos = make_cuda_tensor(view_pos, p.gridSize);
p.perturbed_nrm = make_cuda_tensor(perturbed_nrm, p.gridSize);
p.smooth_nrm = make_cuda_tensor(smooth_nrm, p.gridSize);
p.smooth_tng = make_cuda_tensor(smooth_tng, p.gridSize);
p.geom_nrm = make_cuda_tensor(geom_nrm, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)PrepareShadingNormalFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> prepare_shading_normal_bwd(torch::Tensor pos, torch::Tensor view_pos, torch::Tensor perturbed_nrm, torch::Tensor smooth_nrm, torch::Tensor smooth_tng, torch::Tensor geom_nrm, torch::Tensor grad, bool two_sided_shading, bool opengl)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
PrepareShadingNormalKernelParams p;
p.two_sided_shading = two_sided_shading;
p.opengl = opengl;
update_grid(p.gridSize, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
// Setup tensors
torch::Tensor pos_grad, view_pos_grad, perturbed_nrm_grad, smooth_nrm_grad, smooth_tng_grad, geom_nrm_grad;
p.pos = make_cuda_tensor(pos, p.gridSize, &pos_grad);
p.view_pos = make_cuda_tensor(view_pos, p.gridSize, &view_pos_grad);
p.perturbed_nrm = make_cuda_tensor(perturbed_nrm, p.gridSize, &perturbed_nrm_grad);
p.smooth_nrm = make_cuda_tensor(smooth_nrm, p.gridSize, &smooth_nrm_grad);
p.smooth_tng = make_cuda_tensor(smooth_tng, p.gridSize, &smooth_tng_grad);
p.geom_nrm = make_cuda_tensor(geom_nrm, p.gridSize, &geom_nrm_grad);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)PrepareShadingNormalBwdKernel, gridSize, blockSize, args, 0, stream));
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(pos_grad, view_pos_grad, perturbed_nrm_grad, smooth_nrm_grad, smooth_tng_grad, geom_nrm_grad);
}
//------------------------------------------------------------------------
// lambert
torch::Tensor lambert_fwd(torch::Tensor nrm, torch::Tensor wi, bool fp16)
{
CHECK_TENSOR(nrm, 4, 3);
CHECK_TENSOR(wi, 4, 3);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
LambertKernelParams p;
p.out.fp16 = fp16;
update_grid(p.gridSize, nrm, wi);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
p.nrm = make_cuda_tensor(nrm, p.gridSize);
p.wi = make_cuda_tensor(wi, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)LambertFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
std::tuple<torch::Tensor, torch::Tensor> lambert_bwd(torch::Tensor nrm, torch::Tensor wi, torch::Tensor grad)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
LambertKernelParams p;
update_grid(p.gridSize, nrm, wi);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
torch::Tensor nrm_grad, wi_grad;
p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad);
p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)LambertBwdKernel, gridSize, blockSize, args, 0, stream));
return std::tuple<torch::Tensor, torch::Tensor>(nrm_grad, wi_grad);
}
//------------------------------------------------------------------------
// fresnel_shlick
torch::Tensor fresnel_shlick_fwd(torch::Tensor f0, torch::Tensor f90, torch::Tensor cosTheta, bool fp16)
{
CHECK_TENSOR(f0, 4, 3);
CHECK_TENSOR(f90, 4, 3);
CHECK_TENSOR(cosTheta, 4, 1);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
FresnelShlickKernelParams p;
p.out.fp16 = fp16;
update_grid(p.gridSize, f0, f90, cosTheta);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
p.f0 = make_cuda_tensor(f0, p.gridSize);
p.f90 = make_cuda_tensor(f90, p.gridSize);
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FresnelShlickFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> fresnel_shlick_bwd(torch::Tensor f0, torch::Tensor f90, torch::Tensor cosTheta, torch::Tensor grad)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
FresnelShlickKernelParams p;
update_grid(p.gridSize, f0, f90, cosTheta);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
torch::Tensor f0_grad, f90_grad, cosT_grad;
p.f0 = make_cuda_tensor(f0, p.gridSize, &f0_grad);
p.f90 = make_cuda_tensor(f90, p.gridSize, &f90_grad);
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosT_grad);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FresnelShlickBwdKernel, gridSize, blockSize, args, 0, stream));
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>(f0_grad, f90_grad, cosT_grad);
}
//------------------------------------------------------------------------
// ndf_ggd
torch::Tensor ndf_ggx_fwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, bool fp16)
{
CHECK_TENSOR(alphaSqr, 4, 1);
CHECK_TENSOR(cosTheta, 4, 1);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
NdfGGXParams p;
p.out.fp16 = fp16;
update_grid(p.gridSize, alphaSqr, cosTheta);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize);
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)ndfGGXFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
std::tuple<torch::Tensor, torch::Tensor> ndf_ggx_bwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, torch::Tensor grad)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
NdfGGXParams p;
update_grid(p.gridSize, alphaSqr, cosTheta);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
torch::Tensor alphaSqr_grad, cosTheta_grad;
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad);
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosTheta_grad);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)ndfGGXBwdKernel, gridSize, blockSize, args, 0, stream));
return std::tuple<torch::Tensor, torch::Tensor>(alphaSqr_grad, cosTheta_grad);
}
//------------------------------------------------------------------------
// lambda_ggx
torch::Tensor lambda_ggx_fwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, bool fp16)
{
CHECK_TENSOR(alphaSqr, 4, 1);
CHECK_TENSOR(cosTheta, 4, 1);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
NdfGGXParams p;
p.out.fp16 = fp16;
update_grid(p.gridSize, alphaSqr, cosTheta);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize);
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)lambdaGGXFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
std::tuple<torch::Tensor, torch::Tensor> lambda_ggx_bwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, torch::Tensor grad)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
NdfGGXParams p;
update_grid(p.gridSize, alphaSqr, cosTheta);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
torch::Tensor alphaSqr_grad, cosTheta_grad;
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad);
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosTheta_grad);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)lambdaGGXBwdKernel, gridSize, blockSize, args, 0, stream));
return std::tuple<torch::Tensor, torch::Tensor>(alphaSqr_grad, cosTheta_grad);
}
//------------------------------------------------------------------------
// masking_smith
torch::Tensor masking_smith_fwd(torch::Tensor alphaSqr, torch::Tensor cosThetaI, torch::Tensor cosThetaO, bool fp16)
{
CHECK_TENSOR(alphaSqr, 4, 1);
CHECK_TENSOR(cosThetaI, 4, 1);
CHECK_TENSOR(cosThetaO, 4, 1);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
MaskingSmithParams p;
p.out.fp16 = fp16;
update_grid(p.gridSize, alphaSqr, cosThetaI, cosThetaO);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize);
p.cosThetaI = make_cuda_tensor(cosThetaI, p.gridSize);
p.cosThetaO = make_cuda_tensor(cosThetaO, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)maskingSmithFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> masking_smith_bwd(torch::Tensor alphaSqr, torch::Tensor cosThetaI, torch::Tensor cosThetaO, torch::Tensor grad)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
MaskingSmithParams p;
update_grid(p.gridSize, alphaSqr, cosThetaI, cosThetaO);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
torch::Tensor alphaSqr_grad, cosThetaI_grad, cosThetaO_grad;
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad);
p.cosThetaI = make_cuda_tensor(cosThetaI, p.gridSize, &cosThetaI_grad);
p.cosThetaO = make_cuda_tensor(cosThetaO, p.gridSize, &cosThetaO_grad);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)maskingSmithBwdKernel, gridSize, blockSize, args, 0, stream));
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>(alphaSqr_grad, cosThetaI_grad, cosThetaO_grad);
}
//------------------------------------------------------------------------
// pbr_specular
torch::Tensor pbr_specular_fwd(torch::Tensor col, torch::Tensor nrm, torch::Tensor wo, torch::Tensor wi, torch::Tensor alpha, float min_roughness, bool fp16)
{
CHECK_TENSOR(col, 4, 3);
CHECK_TENSOR(nrm, 4, 3);
CHECK_TENSOR(wo, 4, 3);
CHECK_TENSOR(wi, 4, 3);
CHECK_TENSOR(alpha, 4, 1);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
PbrSpecular p;
p.out.fp16 = fp16;
p.min_roughness = min_roughness;
update_grid(p.gridSize, col, nrm, wo, wi, alpha);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
p.col = make_cuda_tensor(col, p.gridSize);
p.nrm = make_cuda_tensor(nrm, p.gridSize);
p.wo = make_cuda_tensor(wo, p.gridSize);
p.wi = make_cuda_tensor(wi, p.gridSize);
p.alpha = make_cuda_tensor(alpha, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrSpecularFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> pbr_specular_bwd(torch::Tensor col, torch::Tensor nrm, torch::Tensor wo, torch::Tensor wi, torch::Tensor alpha, float min_roughness, torch::Tensor grad)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
PbrSpecular p;
update_grid(p.gridSize, col, nrm, wo, wi, alpha);
p.min_roughness = min_roughness;
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
torch::Tensor col_grad, nrm_grad, wo_grad, wi_grad, alpha_grad;
p.col = make_cuda_tensor(col, p.gridSize, &col_grad);
p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad);
p.wo = make_cuda_tensor(wo, p.gridSize, &wo_grad);
p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad);
p.alpha = make_cuda_tensor(alpha, p.gridSize, &alpha_grad);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrSpecularBwdKernel, gridSize, blockSize, args, 0, stream));
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(col_grad, nrm_grad, wo_grad, wi_grad, alpha_grad);
}
//------------------------------------------------------------------------
// pbr_bsdf
torch::Tensor pbr_bsdf_fwd(torch::Tensor kd, torch::Tensor arm, torch::Tensor pos, torch::Tensor nrm, torch::Tensor view_pos, torch::Tensor light_pos, float min_roughness, bool fp16)
{
CHECK_TENSOR(kd, 4, 3);
CHECK_TENSOR(arm, 4, 3);
CHECK_TENSOR(pos, 4, 3);
CHECK_TENSOR(nrm, 4, 3);
CHECK_TENSOR(view_pos, 4, 3);
CHECK_TENSOR(light_pos, 4, 3);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
PbrBSDF p;
p.out.fp16 = fp16;
p.min_roughness = min_roughness;
update_grid(p.gridSize, kd, arm, pos, nrm, view_pos, light_pos);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
p.kd = make_cuda_tensor(kd, p.gridSize);
p.arm = make_cuda_tensor(arm, p.gridSize);
p.pos = make_cuda_tensor(pos, p.gridSize);
p.nrm = make_cuda_tensor(nrm, p.gridSize);
p.view_pos = make_cuda_tensor(view_pos, p.gridSize);
p.light_pos = make_cuda_tensor(light_pos, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrBSDFFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> pbr_bsdf_bwd(torch::Tensor kd, torch::Tensor arm, torch::Tensor pos, torch::Tensor nrm, torch::Tensor view_pos, torch::Tensor light_pos, float min_roughness, torch::Tensor grad)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
PbrBSDF p;
update_grid(p.gridSize, kd, arm, pos, nrm, view_pos, light_pos);
p.min_roughness = min_roughness;
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
torch::Tensor kd_grad, arm_grad, pos_grad, nrm_grad, view_pos_grad, light_pos_grad;
p.kd = make_cuda_tensor(kd, p.gridSize, &kd_grad);
p.arm = make_cuda_tensor(arm, p.gridSize, &arm_grad);
p.pos = make_cuda_tensor(pos, p.gridSize, &pos_grad);
p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad);
p.view_pos = make_cuda_tensor(view_pos, p.gridSize, &view_pos_grad);
p.light_pos = make_cuda_tensor(light_pos, p.gridSize, &light_pos_grad);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrBSDFBwdKernel, gridSize, blockSize, args, 0, stream));
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(kd_grad, arm_grad, pos_grad, nrm_grad, view_pos_grad, light_pos_grad);
}
//------------------------------------------------------------------------
// loss function
LossType strToLoss(std::string str)
{
if (str == "mse")
return LOSS_MSE;
else if (str == "relmse")
return LOSS_RELMSE;
else if (str == "smape")
return LOSS_SMAPE;
else
return LOSS_L1;
}
torch::Tensor image_loss_fwd(torch::Tensor img, torch::Tensor target, std::string loss, std::string tonemapper, bool fp16)
{
CHECK_TENSOR(img, 4, 3);
CHECK_TENSOR(target, 4, 3);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
LossKernelParams p;
p.out.fp16 = fp16;
p.loss = strToLoss(loss);
p.tonemapper = tonemapper == "log_srgb" ? TONEMAPPER_LOG_SRGB : TONEMAPPER_NONE;
update_grid(p.gridSize, img, target);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 warpSize = getWarpSize(blockSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({ (p.gridSize.z - 1) / warpSize.z + 1, (p.gridSize.y - 1) / warpSize.y + 1, (p.gridSize.x - 1) / warpSize.x + 1, 1 }, opts);
p.img = make_cuda_tensor(img, p.gridSize);
p.target = make_cuda_tensor(target, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)imgLossFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
std::tuple<torch::Tensor, torch::Tensor> image_loss_bwd(torch::Tensor img, torch::Tensor target, torch::Tensor grad, std::string loss, std::string tonemapper)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
LossKernelParams p;
p.loss = strToLoss(loss);
p.tonemapper = tonemapper == "log_srgb" ? TONEMAPPER_LOG_SRGB : TONEMAPPER_NONE;
update_grid(p.gridSize, img, target);
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize);
dim3 warpSize = getWarpSize(blockSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
torch::Tensor img_grad, target_grad;
p.img = make_cuda_tensor(img, p.gridSize, &img_grad);
p.target = make_cuda_tensor(target, p.gridSize, &target_grad);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)imgLossBwdKernel, gridSize, blockSize, args, 0, stream));
return std::tuple<torch::Tensor, torch::Tensor>(img_grad, target_grad);
}
//------------------------------------------------------------------------
// transform function
torch::Tensor xfm_fwd(torch::Tensor points, torch::Tensor matrix, bool isPoints, bool fp16)
{
CHECK_TENSOR(points, 3, 3);
CHECK_TENSOR(matrix, 3, 4);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
XfmKernelParams p;
p.out.fp16 = fp16;
p.isPoints = isPoints;
p.gridSize.x = points.size(1);
p.gridSize.y = 1;
p.gridSize.z = std::max(matrix.size(0), points.size(0));
// Choose launch parameters.
dim3 blockSize(BLOCK_X * BLOCK_Y, 1, 1);
dim3 warpSize = getWarpSize(blockSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = isPoints ? torch::empty({ matrix.size(0), points.size(1), 4 }, opts) : torch::empty({ matrix.size(0), points.size(1), 3 }, opts);
p.points = make_cuda_tensor(points, p.gridSize);
p.matrix = make_cuda_tensor(matrix, p.gridSize);
p.out = make_cuda_tensor(out, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)xfmPointsFwdKernel, gridSize, blockSize, args, 0, stream));
return out;
}
torch::Tensor xfm_bwd(torch::Tensor points, torch::Tensor matrix, torch::Tensor grad, bool isPoints)
{
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// Extract input parameters.
XfmKernelParams p;
p.isPoints = isPoints;
p.gridSize.x = points.size(1);
p.gridSize.y = 1;
p.gridSize.z = std::max(matrix.size(0), points.size(0));
// Choose launch parameters.
dim3 blockSize(BLOCK_X * BLOCK_Y, 1, 1);
dim3 warpSize = getWarpSize(blockSize);
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize);
torch::Tensor points_grad;
p.points = make_cuda_tensor(points, p.gridSize, &points_grad);
p.matrix = make_cuda_tensor(matrix, p.gridSize);
p.out = make_cuda_tensor(grad, p.gridSize);
// Launch CUDA kernel.
void* args[] = { &p };
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)xfmPointsBwdKernel, gridSize, blockSize, args, 0, stream));
return points_grad;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("prepare_shading_normal_fwd", &prepare_shading_normal_fwd, "prepare_shading_normal_fwd");
m.def("prepare_shading_normal_bwd", &prepare_shading_normal_bwd, "prepare_shading_normal_bwd");
m.def("lambert_fwd", &lambert_fwd, "lambert_fwd");
m.def("lambert_bwd", &lambert_bwd, "lambert_bwd");
m.def("fresnel_shlick_fwd", &fresnel_shlick_fwd, "fresnel_shlick_fwd");
m.def("fresnel_shlick_bwd", &fresnel_shlick_bwd, "fresnel_shlick_bwd");
m.def("ndf_ggx_fwd", &ndf_ggx_fwd, "ndf_ggx_fwd");
m.def("ndf_ggx_bwd", &ndf_ggx_bwd, "ndf_ggx_bwd");
m.def("lambda_ggx_fwd", &lambda_ggx_fwd, "lambda_ggx_fwd");
m.def("lambda_ggx_bwd", &lambda_ggx_bwd, "lambda_ggx_bwd");
m.def("masking_smith_fwd", &masking_smith_fwd, "masking_smith_fwd");
m.def("masking_smith_bwd", &masking_smith_bwd, "masking_smith_bwd");
m.def("pbr_specular_fwd", &pbr_specular_fwd, "pbr_specular_fwd");
m.def("pbr_specular_bwd", &pbr_specular_bwd, "pbr_specular_bwd");
m.def("pbr_bsdf_fwd", &pbr_bsdf_fwd, "pbr_bsdf_fwd");
m.def("pbr_bsdf_bwd", &pbr_bsdf_bwd, "pbr_bsdf_bwd");
m.def("image_loss_fwd", &image_loss_fwd, "image_loss_fwd");
m.def("image_loss_bwd", &image_loss_bwd, "image_loss_bwd");
m.def("xfm_fwd", &xfm_fwd, "xfm_fwd");
m.def("xfm_bwd", &xfm_bwd, "xfm_bwd");
}