Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import openai # Assuming you're using OpenAI's API | |
| import requests | |
| from bs4 import BeautifulSoup | |
| # Function for chatbot response | |
| def chatbot(input_text): | |
| # Implement a more advanced chatbot logic or integrate with a model | |
| response = f"Chatbot response: {input_text}" | |
| return response | |
| # Function to generate responses using OpenAI API | |
| def generate_openai_response(input_text): | |
| openai.api_key = "your-openai-api-key" # Replace with your actual OpenAI API key | |
| response = openai.Completion.create( | |
| engine="text-davinci-003", | |
| prompt=input_text, | |
| max_tokens=150 | |
| ) | |
| return response.choices[0].text.strip() | |
| # Function to scrape information from URLs | |
| def scrape_url(url): | |
| try: | |
| response = requests.get(url) | |
| soup = BeautifulSoup(response.text, 'html.parser') | |
| scrapped_data = soup.get_text() | |
| return scrapped_data.strip() | |
| except Exception as e: | |
| return f"Error: {e}" | |
| # Function to analyze user-provided documents | |
| def analyze_document(document): | |
| # Implement document analysis logic | |
| analysis_result = f"Analysis result: {document[:100]}..." # Just an example, adjust as needed | |
| return analysis_result | |
| # Function to execute code, equations, or scripts | |
| def execute_code(input_code): | |
| try: | |
| exec_globals = {} | |
| exec(input_code, exec_globals) | |
| return exec_globals | |
| except Exception as e: | |
| return f"Execution error: {e}" | |
| # Creating Gradio interfaces for each functionality | |
| chatbot_interface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Custom Chatbot") | |
| openai_interface = gr.Interface(fn=generate_openai_response, inputs="text", outputs="text", title="OpenAI API Response") | |
| scrape_url_interface = gr.Interface(fn=scrape_url, inputs="text", outputs="text", title="Web Scraping") | |
| analyze_document_interface = gr.Interface(fn=analyze_document, inputs="text", outputs="text", title="Document Analysis") | |
| execute_code_interface = gr.Interface(fn=execute_code, inputs="text", outputs="json", title="Code Execution") | |
| # Launching all interfaces together | |
| gr.TabbedInterface([chatbot_interface, openai_interface, scrape_url_interface, analyze_document_interface, execute_code_interface], ["Chatbot", "OpenAI", "Web Scraping", "Document Analysis", "Code Execution"]).launch(share=True) | |