Spaces:
No application file
No application file
File size: 1,162 Bytes
d3201b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import requests
# Set the model ID for Whisper small English model
model_id = "openai/whisper-small.en"
# Function to send audio to Hugging Face Inference API and get transcription
def transcribe(audio):
if audio is None:
return "No audio provided."
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
headers = {"Authorization": "Bearer YOUR_HUGGINGFACE_API_TOKEN"}
# Read and send the audio file
with open(audio, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
# Return the transcription or error
if response.status_code == 200:
return response.json().get("text", "No text returned.")
else:
return f"Error: {response.status_code} - {response.text}"
# Gradio Interface
interface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="upload", type="filepath", label="Upload Audio"),
outputs=gr.Textbox(label="Transcribed Text"),
title="Speech Recognition with Whisper",
description="Upload an audio file and get the transcribed text using OpenAI Whisper (small.en)."
)
interface.launch()
|