skin / eda_analysis.py
Kalyangotimothy
new
217a100
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
import re
from wordcloud import WordCloud
from textstat import flesch_reading_ease, flesch_kincaid_grade
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
import warnings
warnings.filterwarnings('ignore')
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('stopwords')
class SkinDiseaseEDA:
def __init__(self, filepath):
self.filepath = filepath
self.data = []
self.articles = []
self.load_data()
def load_data(self):
"""Parse the structured text file into articles"""
with open(self.filepath, 'r', encoding='utf-8') as file:
content = file.read()
# Split by separator
articles = content.split('------------------------------------------------------------')
for article in articles:
if not article.strip():
continue
lines = article.strip().split('\n')
article_data = {
'title': '',
'journal': '',
'authors': '',
'abstract': '',
'diagnosis': '',
'treatment': ''
}
current_section = None
for line in lines:
line = line.strip()
if not line:
continue
if line.startswith('Journal:'):
current_section = 'journal'
article_data['journal'] = line.replace('Journal:', '').strip()
elif line.startswith('Authors:'):
current_section = 'authors'
article_data['authors'] = line.replace('Authors:', '').strip()
elif line.startswith('Abstract:'):
current_section = 'abstract'
article_data['abstract'] = line.replace('Abstract:', '').strip()
elif line == 'Diagnosis':
current_section = 'diagnosis'
elif line == 'Treatment Remedies':
current_section = 'treatment'
elif current_section == 'abstract' and not line.startswith(('Journal:', 'Authors:', 'Diagnosis', 'Treatment')):
article_data['abstract'] += ' ' + line
elif current_section == 'diagnosis' and not line.startswith(('Journal:', 'Authors:', 'Abstract:', 'Treatment')):
article_data['diagnosis'] += ' ' + line
elif current_section == 'treatment' and not line.startswith(('Journal:', 'Authors:', 'Abstract:', 'Diagnosis')):
article_data['treatment'] += ' ' + line
elif not any(line.startswith(prefix) for prefix in ['Journal:', 'Authors:', 'Abstract:', 'Diagnosis', 'Treatment']) and not current_section:
article_data['title'] = line
# Clean up data
for key in article_data:
article_data[key] = article_data[key].strip()
if article_data['title']:
self.articles.append(article_data)
def basic_statistics(self):
"""Generate basic statistics about the corpus"""
print("=== BASIC CORPUS STATISTICS ===")
print(f"Total articles: {len(self.articles)}")
# Text length statistics
abstract_lengths = [len(article['abstract']) for article in self.articles if article['abstract']]
title_lengths = [len(article['title']) for article in self.articles if article['title']]
print(f"Articles with abstracts: {len(abstract_lengths)}")
print(f"Average abstract length: {np.mean(abstract_lengths):.1f} characters")
print(f"Average title length: {np.mean(title_lengths):.1f} characters")
# Word counts
abstract_words = [len(article['abstract'].split()) for article in self.articles if article['abstract']]
print(f"Average abstract word count: {np.mean(abstract_words):.1f} words")
# Diagnosis and treatment availability
with_diagnosis = sum(1 for article in self.articles if article['diagnosis'] and article['diagnosis'] != 'Not specified.')
with_treatment = sum(1 for article in self.articles if article['treatment'])
print(f"Articles with specific diagnosis: {with_diagnosis} ({with_diagnosis/len(self.articles)*100:.1f}%)")
print(f"Articles with treatment info: {with_treatment} ({with_treatment/len(self.articles)*100:.1f}%)")
return {
'total_articles': len(self.articles),
'abstract_lengths': abstract_lengths,
'title_lengths': title_lengths,
'abstract_words': abstract_words,
'with_diagnosis': with_diagnosis,
'with_treatment': with_treatment
}
def journal_analysis(self):
"""Analyze journal distribution"""
print("\n=== JOURNAL ANALYSIS ===")
journals = [article['journal'] for article in self.articles if article['journal']]
journal_counts = Counter(journals)
print(f"Total unique journals: {len(journal_counts)}")
print("Top 10 journals:")
for journal, count in journal_counts.most_common(10):
print(f" {journal}: {count} articles")
# Create visualization
plt.figure(figsize=(12, 8))
top_journals = dict(journal_counts.most_common(15))
plt.barh(list(top_journals.keys()), list(top_journals.values()))
plt.title('Top 15 Journals by Article Count')
plt.xlabel('Number of Articles')
plt.tight_layout()
plt.show()
return journal_counts
def author_analysis(self):
"""Analyze author patterns"""
print("\n=== AUTHOR ANALYSIS ===")
all_authors = []
for article in self.articles:
if article['authors']:
# Split authors by comma
authors = [author.strip() for author in article['authors'].split(',')]
all_authors.extend(authors)
author_counts = Counter(all_authors)
print(f"Total unique authors: {len(author_counts)}")
print(f"Total author instances: {len(all_authors)}")
print(f"Average authors per article: {len(all_authors)/len(self.articles):.1f}")
print("Top 10 most prolific authors:")
for author, count in author_counts.most_common(10):
print(f" {author}: {count} articles")
# Author collaboration network size
author_counts_per_article = [len(article['authors'].split(',')) for article in self.articles if article['authors']]
print(f"Average collaboration size: {np.mean(author_counts_per_article):.1f} authors per article")
return author_counts
def disease_analysis(self):
"""Analyze disease mentions and patterns"""
print("\n=== DISEASE AND CONDITION ANALYSIS ===")
# Common disease terms
disease_terms = [
'cancer', 'carcinoma', 'melanoma', 'psoriasis', 'dermatitis', 'eczema',
'acne', 'rosacea', 'vitiligo', 'lupus', 'scleroderma', 'pemphigus',
'bullous', 'urticaria', 'mastocytosis', 'lymphoma', 'sarcoma',
'basal cell', 'squamous cell', 'keratosis', 'mycosis', 'fungal',
'bacterial', 'viral', 'herpes', 'warts', 'molluscum', 'impetigo'
]
# Count mentions in titles and abstracts
disease_counts = Counter()
for article in self.articles:
text = (article['title'] + ' ' + article['abstract']).lower()
for term in disease_terms:
if term in text:
disease_counts[term] += 1
print("Top 15 disease/condition mentions:")
for disease, count in disease_counts.most_common(15):
print(f" {disease}: {count} mentions")
# Create visualization
plt.figure(figsize=(12, 8))
top_diseases = dict(disease_counts.most_common(15))
plt.barh(list(top_diseases.keys()), list(top_diseases.values()))
plt.title('Top 15 Disease/Condition Mentions')
plt.xlabel('Number of Mentions')
plt.tight_layout()
plt.show()
return disease_counts
def treatment_analysis(self):
"""Analyze treatment patterns"""
print("\n=== TREATMENT ANALYSIS ===")
# Common treatment terms
treatment_terms = [
'therapy', 'treatment', 'drug', 'medication', 'topical', 'oral',
'systemic', 'immunosuppressive', 'corticosteroid', 'antibiotic',
'antifungal', 'antiviral', 'chemotherapy', 'radiotherapy',
'surgical', 'laser', 'phototherapy', 'immunotherapy', 'biologic',
'methotrexate', 'cyclosporine', 'tacrolimus', 'rituximab'
]
treatment_counts = Counter()
for article in self.articles:
text = (article['treatment'] + ' ' + article['abstract']).lower()
for term in treatment_terms:
if term in text:
treatment_counts[term] += 1
print("Top 15 treatment mentions:")
for treatment, count in treatment_counts.most_common(15):
print(f" {treatment}: {count} mentions")
# Create visualization
plt.figure(figsize=(12, 8))
top_treatments = dict(treatment_counts.most_common(15))
plt.barh(list(top_treatments.keys()), list(top_treatments.values()))
plt.title('Top 15 Treatment Mentions')
plt.xlabel('Number of Mentions')
plt.tight_layout()
plt.show()
return treatment_counts
def keyword_analysis(self):
"""Perform keyword analysis using TF-IDF"""
print("\n=== KEYWORD ANALYSIS ===")
# Combine title and abstract for each article
documents = []
for article in self.articles:
doc = article['title'] + ' ' + article['abstract']
documents.append(doc)
# TF-IDF analysis
stop_words = set(stopwords.words('english'))
stop_words.update(['study', 'research', 'analysis', 'results', 'conclusion', 'background', 'methods'])
vectorizer = TfidfVectorizer(
max_features=100,
stop_words=list(stop_words),
ngram_range=(1, 2),
min_df=2,
max_df=0.8
)
tfidf_matrix = vectorizer.fit_transform(documents)
feature_names = vectorizer.get_feature_names_out()
# Get top keywords
mean_scores = np.mean(tfidf_matrix.toarray(), axis=0)
top_indices = np.argsort(mean_scores)[::-1][:20]
print("Top 20 keywords by TF-IDF score:")
for i, idx in enumerate(top_indices):
print(f" {i+1}. {feature_names[idx]}: {mean_scores[idx]:.4f}")
# Create word cloud
all_text = ' '.join(documents)
wordcloud = WordCloud(
width=800,
height=400,
background_color='white',
stopwords=stop_words,
max_words=100
).generate(all_text)
plt.figure(figsize=(12, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud of Skin Disease Articles')
plt.tight_layout()
plt.show()
return feature_names, mean_scores
def readability_analysis(self):
"""Analyze text readability"""
print("\n=== READABILITY ANALYSIS ===")
flesch_scores = []
grade_levels = []
for article in self.articles:
if article['abstract']:
try:
flesch_score = flesch_reading_ease(article['abstract'])
grade_level = flesch_kincaid_grade(article['abstract'])
flesch_scores.append(flesch_score)
grade_levels.append(grade_level)
except:
continue
print(f"Average Flesch Reading Ease Score: {np.mean(flesch_scores):.1f}")
print(f"Average Grade Level: {np.mean(grade_levels):.1f}")
# Interpretation
avg_flesch = np.mean(flesch_scores)
if avg_flesch >= 90:
difficulty = "Very Easy"
elif avg_flesch >= 80:
difficulty = "Easy"
elif avg_flesch >= 70:
difficulty = "Fairly Easy"
elif avg_flesch >= 60:
difficulty = "Standard"
elif avg_flesch >= 50:
difficulty = "Fairly Difficult"
elif avg_flesch >= 30:
difficulty = "Difficult"
else:
difficulty = "Very Difficult"
print(f"Reading Difficulty: {difficulty}")
return flesch_scores, grade_levels
def generate_summary_report(self):
"""Generate a comprehensive summary report"""
print("\n" + "="*50)
print("COMPREHENSIVE EDA SUMMARY REPORT")
print("="*50)
# Run all analyses
basic_stats = self.basic_statistics()
journal_counts = self.journal_analysis()
author_counts = self.author_analysis()
disease_counts = self.disease_analysis()
treatment_counts = self.treatment_analysis()
keywords, scores = self.keyword_analysis()
flesch_scores, grade_levels = self.readability_analysis()
# Summary insights
print("\n=== KEY INSIGHTS ===")
print(f"1. Corpus contains {basic_stats['total_articles']} articles from {len(journal_counts)} unique journals")
print(f"2. Most common disease area: {disease_counts.most_common(1)[0][0] if disease_counts else 'N/A'}")
print(f"3. Most common treatment approach: {treatment_counts.most_common(1)[0][0] if treatment_counts else 'N/A'}")
print(f"4. Average reading level: Grade {np.mean(grade_levels):.1f}")
print(f"5. {basic_stats['with_diagnosis']} articles have specific diagnosis information")
print(f"6. {basic_stats['with_treatment']} articles contain treatment information")
def main():
# Initialize EDA
eda = SkinDiseaseEDA('skin_disease_articles_clean.txt')
# Generate comprehensive report
eda.generate_summary_report()
# Set up plotting style
plt.style.use('seaborn-v0_8')
sns.set_palette("husl")
print("\n" + "="*50)
print("EDA ANALYSIS COMPLETE")
print("="*50)
if __name__ == "__main__":
main()